[image: First Edition]
Microinteractions

Dan Saffer

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Praise for Microinteractions

“Dan Saffer’s book, Microinteractions, is the
 best book I’ve read about design in ages. I’ve been working in design for
 20 years and often have younger designers ask me for advice, or how to
 achieve their grand design dreams. Most books about design are similarly
 grand and presume that everyone knows the basics well enough to do the
 little things well. The world proves this not to be true. Spend an
 afternoon strolling around town with a gaggle of caffeinated interaction
 designers and you’ll hear an endless commentary on the details the
 designers of the world have gotten wrong.
The book itself is wonderfully self-consistent: it’s short, concise,
 well designed and brilliant. The fun and salient examples nail Saffer’s
 points, and his writing is sharp, incisive, and with just enough comedic
 curmudgeonry to keep you smiling most of the way through.”
—Scott Berkun

“Microinteractions is a book I’ve wanted for a
 very long time. I’ve needed a thoughtful, insightful, and concise
 understanding of how to look at interaction design at the atomic level.
 Dan’s delivered that in spades.”
—Jared Spool, User Interface Engineering

“Microinteractions is an essential guide to
 designing in today’s world where a typical person touches a hundred
 different user experiences each day, and only the clearest interactions
 will turn a new user experience into a cherished product.
“In this book, Dan Saffer turns the Cognitive Walkthrough on its
 head and takes it to the next level, creating a new model for defining
 interactions and illustrating the strength of designing for moments rather
 than systems.
“An easy, jargon-free read and an invaluable reference,
 Microinteractions is packed with vital principles
 backed up by a wide spectrum of useful real-world examples of what to do
 and what not to do. You’ll get something out of reading any two pages and
 even more out of reading them again. The book is an example of its own
 teachings. Approachable, but with deeper insights as needed.”
—Kevin Fox, designer, Gmail

“Saffer has written an excellent, compact, and eminently readable
 volume on a subject under-valued and under-discussed in our industry: the
 art and science of creating small, delightful moments in our daily
 interactions with technology. I recommend it to any designer or programmer
 looking to enhance the desirability and polish the utility of their apps,
 sites, or services, one interaction at a time.”
—Robert Reimann, Founding President, Interaction Design
 Association (IxDA); Principal Interaction Designer, PatientsLikeMe;
 co-author, About Face 3 (Wiley)

“Dariel Fitzkee, the famous magician’s magician, once stated, ‘Magic
 is both in the details and in the performance.’ Interaction design is just
 like that. It is in reality creating a user illusion out of many tiny,
 nuanced, interesting moments. Dan’s book,
 Microinteractions, shines a magnifying glass on these
 moments and teases out how to go from a good to a great ‘user illusion.’ I
 highly recommend this book to every designer and implementer of user
 experiences in any medium.”
—Bill Scott, Senior Director UIE, Paypal

“I have never before seen a book drill down to this level of detail
 into how interactions (let alone microinteractions) actually work. It is
 one of the better books on interaction design I’ve read. I’m going to give
 copies to my designers and product managers and require that they read it
 and explain it back to me.”
—Christian Crumlish, Director of Product,
 CloudOn

Foreword

Don Norman (don@jnd.org)

I first encountered Dan Saffer’s interest in microinteractions at a
 conference in Brazil. I was immediately captivated. Dan started his talk
 with the story of the ringing cellphone at a symphony concert that forms the
 opening pages of Chapter 1. It was very
 clear that by focusing upon the small, Dan had discovered something very
 big.
I next encountered the importance of getting the details right through
 my own frustrations with Apple’s photo cataloging and editing application,
 Aperture. I was putting together the illustrations for a book when suddenly
 my computer froze and I had to force a reboot. But when I tried to open
 Aperture, it announced that the database was corrupted and promptly shut
 down. Huh? What is the use of an error message that provides no remedy? What
 was I supposed to do?
I searched the Aperture help files. No luck. I searched Apple’s
 support website. No luck. I was annoyed and concerned: How could I
 get the photos back? The program wouldn’t even launch. I keep a
 backup on another computer, but my synchronization program was far too
 efficient: the corrupted file had been transferred to the other
 computer.
Finally, after much travail, an Internet search yielded the solution,
 described in a very nicely formatted set of instructions from Apple. I
 followed the instructions and 15 minutes later, all my photos were restored.
 (Note that I couldn’t find this from the Apple site: I found a discussion
 group where someone had posted the link to the proper location at
 Apple.)
Why am I telling you this? Because if only Apple’s programmers had
 read this book, I wouldn’t have had to go through any agony.
 Microinteraction. Get the details right.
Why didn’t that error message contain the solution as well as
 identifying the problem? After all, Apple had a very nice message explaining
 the problem and saying just what to do about it. Suppose the error message
 had said, “The database is corrupted: to correct this, follow these steps”
 (with active buttons on the message dialog box that would initiate the
 process). Why didn’t Apple do this? Was it because the programmers for this
 part of the program didn’t consider it part of their responsibility? Was it
 because these programmers came from a different group that maintained the
 database, so they only knew there was a problem but not how to fix it? Or
 was it because it is not in the culture of error-message writers to also
 provide the solution? (My best guess is that all three factors played a
 role.) Whatever the reason, the result is an inferior user experience, one
 that now has me extremely unhappy with Aperture, searching for a better
 alternative. This can’t be the response Apple wants to produce in its
 customers. If only they had been able to read this book.
Are microinteractions details? Damn right: the magic is all in the
 details.
The “micro” in “microinteractions” implies it is about the small
 things. Small? Yes. Unimportant? Absolutely not!
 Microinteractions is about those critical details that
 make the difference between a friendly experience and traumatic anxiety. As
 Dan Saffer points out in his Preface, designers love to
 get the big picture right. It’s a wonderful feeling. No problem is too
 large. But even if the big picture is done right, unless the details are
 also handled properly, the solution fails: the details are what control the
 moment-to-moment experience. It is timely details that lead to seamless
 interaction with our products. Alternatively, it is the lack of attention to
 those details that lead to frustration, irritation, and eventually an
 intense dislike of the product. Yes, the big picture matters, but so too
 does the detailed picture. It is attention to detail that creates a smooth
 feeling of accomplishment.
There are several steps to great microinteractions. The first, and for
 many developers, the hardest, is to identify the situation properly. This
 requires great observational skills: watching people interact, watching
 yourself interact, identifying the pain points, identifying logical
 sequences, and then determining which things make sense to bring together.
 Obvious candidates can be found in error messages and dialog boxes. Each
 presents some information, thus implying the next step to be performed. Why
 not make that next step part of the present step?
Great microinteraction design requires understanding the people who
 use the product, what they are trying to accomplish, and the steps they need
 to take. It requires understanding the context of those interactions. It is
 essential to develop empathy with the user, to develop the users’
 observational skills, and to instill the knowledge of how to combine
 different aspects of your product—perhaps the result of different
 programming teams or even different divisions—into a single, smooth
 microinteraction. Chapter 1 does a great job of
 introducing the principles of how to do this. The numerous examples
 throughout the book sensitize you to the opportunities that
 microinteractions provide. After that it is up to you: it is your continual
 observation that leads to discovery of new microinteraction opportunities.
 And it is essential not to be blocked, as Apple’s developers apparently
 were, if the solutions require cutting across company organizational
 structures. After all, doing things right for the user is what great
 products are all about.
The second step to great microinteraction is the implementation. There
 are lots of design issues here: triggers, rules, feedback, loops, and
 modes—all nicely described within the chapters of this book.
Are microinteractions important? Well, let me tell you of my last
 major purchase: a new automobile. When I walk up to it and put my hand
 around the door handle, the handles light up and an interior light turns on.
 The door unlocks, and as I enter the car, the seat, mirrors, and even the
 programming of the radio resets itself to my preferences. When I open the
 door, the ceiling light for the seat comes on. If my passenger opens his
 door, that light comes on. As my wife and I take turns driving, the car
 resets itself each time to the settings each of us prefers. How did the car
 designers decide upon this sequence? How did they decide which things to
 control or not control? By clever, intelligent microdesign. Are these small
 things? Yes. Could we have manually done all of this? Yes. But when the car
 does it for us, it provides a sense of delight in the car, a feeling of
 pride of ownership. Isn’t that what all product manufacturers should want
 for their customers?
Hurrah for the small, which is where we spend most of our lives.
 Hurrah for those many seconds and minutes spent seeking how to do the next
 step, the frustrations of inelegant transitions. Hurrah for Dan Saffer and
 this book, where the friendly writing style is enhanced through copious
 examples. I considered myself skilled at observing people interacting with
 technology, but after reading this book, my skills have improved. Now I look
 more closely at the details, at the missed opportunities. I also see where
 products do things right. Learning to see is the first step toward making
 thing better.
Now it is your turn: go out and conquer. Make our lives simpler, more
 enjoyable. Put microinteraction awareness into practice.
Preface

Dan Saffer

What Is This Book About?

Microinteractions are all around us, from the turning on of an
 appliance to logging in to an online service to getting the weather in a
 mobile app. They are the single use-case features that do one thing only.
 They can be stand-alone apps or parts of larger features. The best of them
 perform with efficiency, humor, style, and an understanding of user needs
 and goals. The difference between a product we love and a product we just
 tolerate are often the microinteractions we have with it.
This book dissects microinteractions in order to help readers design
 their own. Starting with a model of microinteractions, each chapter
 closely examines each part of the model, and provides guiding principles
 to get the most out of every microinteraction. By doing so, your products
 will improve and your users will enjoy using them more, building customer
 (and brand) loyalty.

Who Should Read This Book

This book is for anyone who cares about making better products,
 particularly digital products. Designers of all stripes, developers,
 researchers, product managers, critics, and entrepreneurs will hopefully
 find much to think about, use, and emulate here.
This book is especially for anyone who has struggled to convince
 their client, developers, the product or project managers that
 this small thing is really worth doing, that it’ll
 make the product so much better. Now that small thing
 has a name—microinteractions—and can be argued for more
 effectively.

How This Book Is Organized

This is a small book about a small but important topic.
	Chapter 1, Designing Microinteractions
	Introduces microinteractions and discusses why something
 seemingly so insignificant is so important. The structure of
 microinteractions is discussed, laying out the overall pattern that
 all microinteractions follow. Lastly, this chapter looks at how
 microinteractions can be incorporated into projects.

	Chapter 2, Triggers
	Introduces triggers, the moment that microinteractions begin.
 Both manual (user-initiated) and system triggers are reviewed. The
 principle of Bring the Data Forward is discussed.

	Chapter 3, Rules
	Presents a discussion of rules, the hidden parameters and
 characteristics that define a microinteraction: how rules are
 created and what they should encompass, including the principle of
 Don’t Start from Zero.

	Chapter 4, Feedback
	Discusses feedback, or how the rules are understood by the
 user. When to use feedback, as well as the three major types of
 feedback: visual, audio, and haptic. The principles of Thinking
 Human and Using What Is Often Overlooked are introduced.

	Chapter 5, Loops and Modes
	Discusses loops and modes, the “meta” parts of
 microinteractions. The types of modes and loops are discussed, as
 well as how to use long loops.

	Chapter 6, Putting It All Together
	Puts together all the pieces of the microinteractions model to
 design three sample microinteractions: one for a mobile app, another
 for an online app, and the third for an appliance. This is also
 where we’ll discuss linking microinteractions together to form
 features.

	Appendix A
	Touches on the process of testing microinteractions.

Why Write a Book About Microinteractions?

Over the last decade, designers have been encouraged to think big,
 to solve “wicked problems,” to use “design thinking” to tackle massive,
 systemic issues in business and in government. No problem is too large to
 not apply the tools of design to, and design engagements can involve
 everything from organizational restructuring to urban planning.
The results of this refocusing of design efforts are unclear. But by
 working at such a macro scale, an important part of design is often lost:
 the details that delight. Products that we love show an attention to
 detail: the beautiful curve, the satisfying click, the understandable
 mental model.
This is another way to work: not through grand, top-down design
 projects, but from the bottom up, by crafting—lovingly, with care—small
 things. This is something designers can do quite well, with immediate,
 tangible results. This is another way to change the world: by making
 seemingly inconsequential moments into instances of pleasure.
There is a joy in tiny things that are beautiful and work well. This
 joy is both on the part of the user and in the creator, even though it
 certainly takes skill, time, and thought to make it so. It’s hard work,
 and as admirable in its own way as tackling the Big Problems. After all,
 who doesn’t need more joy in their life?

Conventions Used in This Book

The following typographical convention is used in this
 book:
	Italic
	Indicates new terms, URLs, email addresses, filenames, and
 file extensions.

Tip
This icon signifies a tip, suggestion, or general note.

Caution
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, if
 this book includes code examples, you may use the code in your programs
 and documentation. You do not need to contact us for permission unless
 you’re reproducing a significant portion of the code. For example, writing
 a program that uses several chunks of code from this book does not require
 permission. Selling or distributing a CD-ROM of examples from O’Reilly
 books does require permission. Answering a question by citing this book
 and quoting example code does not require permission. Incorporating a
 significant amount of example code from this book into your product’s
 documentation does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “Microinteractions by Dan Saffer (O’Reilly).
 Copyright 2014 Dan Saffer, 978-1-491-94592-6.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata,
 examples, and any additional information. You can access this page at
 http://bit.ly/Microinteractions_full_color.
To comment or ask technical questions about this book, send email to
 bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Content Updates

October 3, 2013

	Changed Windows Mobile to Windows Phone

	Fixed grammatical errors

	Removed extraneous figure callouts

Acknowledgments

I am extremely grateful for Floris Dekker and Andrew McCarthy, the
 editors and collectors of the tremendous blog Little Big Details, where
 most of the images in this book are drawn. Without question, I don’t think
 this book would have been written without the examples so readily
 available to me there. My thanks to them, and particularly to the many
 contributors to their site. I have tried to credit them whenever I could
 track down their names.
Jack Moffett, writer of the “Design A Day” blog, should also get a
 nod of appreciation. Not only did I draw many examples from his “In the
 Details” section, but how he dissected those details has long been
 inspirational to me and led indirectly to this book.
My technical reviewers have greatly improved this book with their
 encouragement, wisdom, and keen eyes: Robert Reimann, Christopher Fahey,
 Dani Malik, Nick Remis, Dave Hoffer, Bill Scott, and Scott Jenson.
Despite the less-than-stellar performance of my last (before its
 time) O’Reilly book, I’m grateful for my editor Mary Tresler and everyone
 at O’Reilly for giving me another shot with this book, and being
 unfailingly supportive about a small book on a strange topic.
As always, the fortitude of the women (human and canine) I live with
 cannot be underestimated. This book in particular tested the patience of
 our house, as I could only write it in the club chair that sits in the
 middle of our TV room. This book is dedicated to them.
Lastly, a hat tip to the teachers and designers I have worked with
 and learned from, past and present, who have taught me—sometimes
 forcibly—the value of focusing on the details. Always, always, it has been
 some clever little bit they’ve imagined or have encouraged me to invent
 that brings the product we’re working on to life. It’s that spark I hoped
 to capture here.

Chapter 1. Designing Microinteractions

“Nothing big works.”
—Victor Papanek

The furious shouting started after the conductor stopped the
 performance. The New York Philharmonic had reached the very end of the slow,
 quiet Adagio movement that finishes Mahler’s Symphony no. 9. The audience,
 many of whom had paid hundreds of dollars for this privilege, sat attentive
 and rapt, listening to the still, sublime moments that resolve over an hour
 of music.
And then it happened: from the front row, the unmistakable sound of an
 iPhone’s “Marimba” sound—that high-pitched xylophone tinkle—going off over
 and over again. An alarm. It kept going. And going. The conductor, Alan
 Gilbert, halted the orchestra. But the alarm kept going off. By now,
 audience members were yelling at the phone’s owner, an older executive the
 Philharmonic later dubbed “Patron X,” a long-time symphony patron. Avery
 Fisher Hall, which just moments before had been unearthly calm and quiet,
 had erupted in chaos and anger.
As the New York Times reported in January
 2012,[1] Patron X had just gotten the iPhone the day before; his
 company had replaced his Blackberry for it. Before the performance began, he
 had flipped the mute switch, turning silent mode on. But what he didn’t know
 was that one of the iPhone’s rules was that alarms still go off even when
 the phone is silenced. So when the alarm went off, he didn’t even realize it
 was his phone for an excruciatingly long time. By the time he knew it was
 his phone and had turned the alarm off, it was too late: the performance was
 ruined.
The next day, as news spread, the Internet exploded with vitriol and
 wisecracks. Composer Daniel Dorff tweeted, “Changed my ringtone to play
 #Mahler 9 just in case.” Arguments and discussions spanned across blogs,
 with some advocating that turning the ringer off should turn every sound
 off. In his January 2012 Article “Daring
 Fireball: On the Behavior of the iPhone Mute Switch” tech columnist
 Andy Ihnatko wrote, “My philosophy is ‘It’s much better to be upset with
 yourself for having done something stupid than to be upset with a device
 that made the wrong decision on its own initiative.’”
While others made the (in my opinion, correct) case that alarms still
 need to sound even when the ringer is turned off. As Apple pundit John
 Gruber pointed out, “If the mute
 switch silenced everything, there’d be thousands of people oversleeping
 every single day because they went to bed the night before unaware that the
 phone was still in silent mode.”
Apple’s own iOS Human Interface
 Guidelines gives its rationale for why muting the phone works the
 way it does:
For example, in a theater users switch their devices to silent to
 avoid bothering other people in the theater. In this situation, users
 still want to be able to use apps on their devices, but they don’t want to
 be surprised by sounds they don’t expect or explicitly request, such as
 ringtones or new message sounds.
The Ring/Silent (or Silent) switch does not silence sounds that
 result from user actions that are solely and explicitly intended to
 produce sound.

In other words, muting the phone does not silence the sounds that
 users have specifically asked for, only those they have not (e.g., text
 messages, incoming phone calls). This is the rule. Like many rules, it’s
 hidden, and it’s compounded by the fact that other than the tiny orange mark
 on the switch, there is no onscreen indicator that the ringer is off. If
 Apple was to change to a different rule—that the silent switch silences
 everything—other rules and feedback would have to be designed. Would the
 phone vibrate when an alarm went off? Would there be some persistent
 indicator that the phone was in silent mode, either onscreen when you woke
 up the phone or a small LED indicator in the hardware? There are many
 different ways silencing a phone could be designed.
Silencing a phone is an example of a microinteraction. A microinteraction is a
 contained product moment that revolves around a single use case—a tiny piece
 of functionality that only does one thing. Microinteractions can power an
 entire app or device, or (more often) exist alongside or inside a larger
 product. They are the small moments that can be dull and forgettable, or
 pleasurable and engaging. Every time you change a setting, sync your data or
 devices, set an alarm, pick a password, turn on an appliance, log in, set a
 status message, or favorite or Like something, you are engaging with a
 microinteraction. They are everywhere: in the devices we carry, the
 appliances in our house, the apps on our phones and desktops, even embedded
 in the environments we live and work in.
[image: An example of a common microinteraction: signup. The Disqus sign-up form cleverly guesses your name based on your email address. (Courtesy Jakob Skjerning and Little Big Details.)]

Figure 1-1. An example of a common microinteraction: signup. The Disqus sign-up
 form cleverly guesses your name based on your email address. (Courtesy
 Jakob Skjerning and Little Big Details.)

Microinteractions are the functional, interactive details of a
 product, and details, as Charles Eames famously said,[2] aren’t just the details; they are the design. Details can make
 engaging with the product easier, more pleasurable—even if we don’t
 consciously remember them. Some microinteractions are practically or
 literally invisible, and few are the reason that you buy a product; instead,
 they are usually pieces of features, or the supporting or so-called
 “hygiene” functionality. For example, no one buys a mobile phone for the
 ability to turn the ringer off, but it’s expected, and, as we’ve seen, that
 microinteraction can create all sorts of experiences—for good and bad. Some
 microinteractions can be frustrating, some dull and forgotten, while the
 best are engaging and clever. It’s this last that this book will provide the
 tools to design.
The case of Patron X is one of the few examples of a microinteraction
 making news. Even though we’re surrounded by microinteractions every day, we
 don’t usually notice them until something goes horribly wrong, as it did for
 Patron X. But microinteractions are, despite their small size and
 near-invisibility, incredibly important. The difference between a product
 you love and a product you tolerate is often the microinteractions you have
 with it. They can make our lives easier, more fun, and just more interesting
 if done well. That’s what this book is all about: how to design
 microinteractions well.
This chapter will teach you how to distinguish microinteractions from
 features, and gives a brief history of
 microinteractions. Then, we’ll dive into the structure of microinteractions, which also forms the
 structure of the rest of the book. The microinteractions model will provide
 a means of discussing and dissecting every piece of a microinteraction so
 that you can design or improve your own microinteractions. Finally, we’ll
 talk about how to incorporate microinteractions into your process.
Microinteractions Are Not Features ... But Still Matter

The combination of well-designed micro- and macro- (feature)
 interactions is a powerful one. This is what experience design truly is:
 paying attention to the details as well as the big picture so that users
 have a great experience using the product.
[image: Twitter’s password-selection form is a great variation on a common microinteraction (picking a password), with very clear feedback. (Courtesy Little Big Details.)]

Figure 1-2. Twitter’s password-selection form is a great variation on a
 common microinteraction (picking a password), with very clear feedback.
 (Courtesy Little Big Details.)

Microinteractions differ from features in both their size and scope.
 Features tend to be complex (multiuse case), time consuming, and
 cognitively engaging. Microinteractions on the other hand are simple,
 brief, and should be nearly effortless. A music player is a feature;
 adjusting the volume is a microinteraction inside that feature.
Microinteractions are good for:
	Accomplishing a single task

	Connecting devices together

	Interacting with a single piece of data, such as a stock price
 or the temperature

	Controlling an ongoing process, such as changing the TV
 channel

	Adjusting a setting

	Viewing or creating a small piece of content, like a status
 message

	Turning a feature or function on or off

[image: When someone posts on your Facebook page in a language that isn’t your default, Facebook offers to translate. (Courtesy Marina Janeiko and Little Big Details.)]

Figure 1-3. When someone posts on your Facebook page in a language that isn’t
 your default, Facebook offers to translate. (Courtesy Marina Janeiko and
 Little Big Details.)

Microinteractions Can Be Big

Microinteractions can be part of a product—or even the
 entire product itself. Take a toaster, for example. A toaster does one thing: toasts.
 It only has one use case: a user puts item to toast into the toaster and
 presses start. Toaster toasts. Toast pops up when done. That’s it. Now,
 of course, there are variations to this (toasting a bagel instead of
 bread), but in general the whole device is powered by a single
 microinteraction.
Similarly, small apps can be made up of one microinteraction.
 Thousands of small apps—desktop and mobile—do one small thing well,
 whether it’s converting measurements like Convertbot (see Figure 1-4), being a
 calculator, or showing weather data.
[image: Tapbot’s Convertbot is an app built around a single microinteraction: converting one value to another.]

Figure 1-4. Tapbot’s Convertbot is an app built around a single
 microinteraction: converting one value to another.

Microinteractions are frequently the last parts of a product to be designed
 and developed, and as such they are often overlooked. But ignoring them
 is a mistake. The reason the original (G1) version of Android felt so
 unpolished was because the microinteractions were clunky, especially in
 comparison to the iPhone; for example, deleting items was inconsistently
 triggered, and in some applications pressing the search key did nothing
 at all. If the microinteractions are poor, the main features, no matter
 how nicely done, are surrounded by pain and frustration. The design of
 your product is only as good as its smallest part.
Consider that almost all operating systems, be they mobile or
 desktop, do basically the same things: install and launch applications,
 manage files, connect software to hardware, manage open applications and
 windows, etc. But the difference between operating systems—at least from
 a user’s perspective—are the microinteractions you have with it on a
 daily, even hourly, basis (see Figure 1-5).
[image: The author’s menu bar in OS X is crammed full of icons, each of which launches a microinteraction.]

Figure 1-5. The author’s menu bar in OS X is crammed full of icons, each of
 which launches a microinteraction.

Of course, some features are so useful and/or powerful (or so
 highly protected by intellectual property laws) that the
 microinteractions don’t matter as much. Many medical devices are
 examples of this, as is most early stage technology, when people are
 more amazed something can be done rather than
 how it’s done. For instance, the first generation of the Roomba (introduced
 in 2002) couldn’t calculate room size or detect obstacles and dirt, but
 it was a novel technology nonetheless, and subsequent models (especially
 now that there are competitors on the market) have focused more on the
 human–robot microinteractions.
[image: When trying to find a word on a page, Chrome indicates in the scrollbar where instances of that word appear. (Courtesy Saul Cozens and Little Big Details.)]

Figure 1-6. When trying to find a word on a page, Chrome indicates in the
 scrollbar where instances of that word appear. (Courtesy Saul Cozens
 and Little Big Details.)

In competitive markets, microinteractions are even more important.
 When there is feature parity, it is the experience using the product
 that increases adoption and brand loyalty. The overall experience of a
 product relies heavily on its microinteractions. They are the “feel” in
 look-and-feel. One reason Google+ fell so flat against Facebook was that
 its microinteractions, such as sorting users into circles, while
 initially intriguing, quickly became tiresome and gimmicky.
Another reason to pay attention to microinteractions is because
 they fit so well into our multiplatform existence. Microinteractions are
 the glue that can tie together features across mobile devices, TV,
 desktop and laptop computers, appliances, and the Web. While the
 microinteractions could vary by platform, their small size allows for a
 consistency that you might not have with large features. In particular,
 appliances and mobile devices with their small (or no) screens seem
 custom-made for microinteractions. Small interactions work well on small
 devices.
Take Twitter for example. Twitter is built entirely around a
 single microinteraction: sending a <140-character message. Users can
 do this from practically any device, anywhere. Some objects even tweet
 independently, or for us. Twitter can be used to send gossip or messages
 to coordinate a revolution. Well-designed microinteractions can scale
 well across platforms and to millions of users.
[image: A nice piece of microcopy. When you go to ask for support at Harvest, it shows the time at their office alongside their office hours. (Courtesy Nicolas Bouliane.)]

Figure 1-7. A nice piece of microcopy. When you go to ask for support at
 Harvest, it shows the time at their office alongside their office
 hours. (Courtesy Nicolas Bouliane.)

Microinteractions also fit well into our already crowded,
 overcomplicated, and fragmented lives. We need and even enjoy the fast
 glance at data, the rapid check-in at a restaurant, the casual review of
 messages on the subway. (The “Casual Games” category is really a set of
 stand-alone microinteractions for amusement.)
Microinteractions force designers to work simply, to focus on
 details. They challenge designers to see how lightweight they can
 design, to reduce complexity and streamline features that could
 otherwise be burdensome.
[image: In Microsoft Office, when text is rotated, relevant styling buttons are rotated as well. (Courtesy Little Big Details.)]

Figure 1-8. In Microsoft Office, when text is rotated, relevant styling
 buttons are rotated as well. (Courtesy Little Big Details.)

The Secret History of Microinteractions

In 1974, a young engineer named Larry Tesler began working on
 an application called Gypsy for the Xerox Alto computer. Gypsy was one of
 the first word-processing applications ever, and the successor to the
 groundbreaking Bravo, the first true WYSIWYG word-processing program and
 the first program that could have the ability to change fonts. Even though
 it was still a word-processing program, Gypsy was a different kind of
 application altogether: it made use of a mouse and a graphical user
 interface (GUI). Larry’s mission—and what would become his rallying cry for decades
 to come—was to reduce the modality of the interface, so that users
 wouldn’t have to switch to a separate mode to perform actions. (His
 website is http://www.nomodes.com, his Twitter
 handle is @nomodes, and even his license plate reads NOMODES.) Larry wanted users, when
 they typed a character key, to always have that character appear onscreen
 as text—not an unreasonable expectation for a word-processing application.
 This wasn’t the case in Bravo: typing only worked in a particular mode;
 other times it triggered a function.
[image: A “screenshot” (Polaroid[!]) of Bravo. The bottom window is being used to make a form in the top window. (Courtesy DigiBarn Computer Museum.)]

Figure 1-9. A “screenshot” (Polaroid[!]) of Bravo. The bottom window is being
 used to make a form in the top window. (Courtesy DigiBarn Computer
 Museum.)

One of those functions was moving text from one part of the document
 to another. In Bravo (see Figure 1-9), users had to first
 select the destination, then press the “I” or “R” keys to enter Insert or
 Replace modes, then find and select the text to move, then finally press
 the Escape key to execute the copy.[3] Larry knew there was a better way to perform this action, so
 he designed one that not only made use of the mouse, but radically
 simplified this microinteraction. In Gypsy, the user could select a piece
 of text, press the “Copy” function key, then select the destination, and
 finally press the “Paste” function key. No mode required. And thus, cut
 and paste was born.
The intertwined history of interaction design and human–computer
 interaction is really the history of microinteractions. The tiny things we
 unthinkingly interact with every day on desktops, laptops, and mobile
 devices were once novel microinteractions: everything from saving a
 document to organizing files into folders to connecting to a WiFi network
 were all microinteractions that needed to be designed. Even “basics” like
 scrolling and opening multiple windows needed to be designed and
 engineered. The forward march of technology has provided a continuous need
 for new microinteractions. We use them unquestioningly now, and only
 really pay attention to them when someone designs a better way, or the
 technology changes and allows for or forces a new way of performing the
 microinteraction.
Indeed, as technologies have changed, the microinteractions that
 support them have also changed. Take scrolling, for instance. Bravo had a primitive version of
 scrolling, but scrolling really became more refined when Alan Kay, Adele
 Goldberg, and Dan Ingalls introduced scrollbars in another Xerox PARC
 product, SmallTalk, sometime between 1973 and 1976. SmallTalk’s scrolling
 could be smooth, pixel-by-pixel, instead of line-by-line. (This was
 famously one of the UI elements demoed to Steve Jobs and his engineers,
 which they then built into Apple’s Lisa (Figure 1-10)—and subsequently
 the Macintosh.)[4]
As documents got longer, scrollbars added
 arrows to jump to the end without scrolling. Tooltip-style indicators
 would appear to indicate where you were in the document. But the real
 change came with touchscreen technology on trackpads and mobile devices.
 Do you slide up or down to scroll down? Apple famously changed directions
 (from down to up) in OS X Lion after the introduction of its iPhones in
 order to align its laptops and mobile devices to “natural scrolling.”
 [See, for example, “Apple’s Mousetrap: Why did Apple reverse the way we
 scroll up and down?” by Michael Agger in Slate.] Apple has also (to the ire
 of many) hidden scrollbars except when scrolling is in process or the
 cursor nears the right edge of a scrollable window. The microinteraction
 keeps evolving.
[image: Apple’s Lisa (1982) featured dozens of “new” (for the market) microinteractions. (Source: Lisa Graphical User Interface Gallery Guidebook.)]

Figure 1-10. Apple’s Lisa (1982) featured dozens of “new” (for the market)
 microinteractions. (Source: Lisa Graphical User Interface Gallery
 Guidebook.)

But it’s not just digital products that have microinteractions; a
 case can be made that microinteractions originated with the first electric
 devices, such as the radio (1893), the flashlight (1986), and the washing
 machine (1900). As designer Bill DeRouchey points out in his talk “The
 History of The Button,” in the (pre-electric) mechanical era, users could
 follow their actions directly from the control to the output. You could
 pull a lever, watch the gears move and finally see the wheels turn. It was
 easy to connect the input to the output. Electricity changed all that. You
 could press a button on the wall and nearly instantly a light on the other
 side of the room turned on. Sure, the feedback was instant, but the method
 of execution was not. As DeRouchey says in “The History of the Button”, “The
 button meant for the first time the result of the human motion could be
 completely different from the motion [it creates] itself.” Action became
 abstracted.
In the digital age, particularly before the GUI, action became even
 more abstract. Inserting a stack of punchcards or flipping a series of
 switches produced output that was equally obtuse. For a time, the GUI
 cleared up and simplified microinteractions. But then Moore’s Law (processor speed doubles every 18 months),
 Koomey’s Law (power consumption for hardware decreases 50% every 18
 months), Kryder’s Law (exponential increase in storage space), and
 increasing bandwidth and network connectivity (LANs first, then wireless
 networks, both local and mobile) created the need for more
 microinteractions, and those microinteractions needed to control actions
 far more abstract than turning on a light. Just as one example, syncing
 data across devices is a conceptually abstract idea, for which there’s no
 readily available physical analog.
Input methods are also drastically changing microinteractions. Not
 only do we have physical controls like buttons, switches, keyboards, and
 mice, we also have touchscreens, sensors, voice, and gestural means of
 triggering microinteractions. In the not-too-distant past, the only way to
 interact with the physical environment was to adjust it manually via a
 physical control. This changed in 1956 when Robert Adler invented the Zenith Space Commander, the first
 TV remote control (Figure 1-11). For the first time,
 users could control an object from a distance, invisibly.
[image: Although there had been remote-control planes and boats previously (mostly for military use), the Space Commander television remote removed proximity from control for consumers. (Courtesy Peter Ha.)]

Figure 1-11. Although there had been remote-control planes and boats
 previously (mostly for military use), the Space Commander television
 remote removed proximity from control for consumers. (Courtesy Peter
 Ha.)

Today, to trigger a microinteraction, you don’t even need to be in
 the same room. With the right equipment, you can adjust the temperature in
 your house from the other side of the world (see Figure 1-12). Or you only need
 to be in the right location; just by being in a certain block, your mobile
 phone can remind you of a to-do item, or your GPS device can tell you
 where to turn left. In public restrooms, you can turn on sinks just by
 putting your hands into them. You can tell your phone to find you a nearby
 restaurant, or flick your finger down a touchscreen list to reveal a
 search bar, or tap your phone on a counter to pay for your coffee. The
 list goes on.
[image: The Nest Learning Thermostat uses proximity sensors to know when someone walks into the room, then lights up and shows the temperature in a way that’s visible at a glance from across the room. No touching required. (Courtesy of Nest.)]

Figure 1-12. The Nest Learning Thermostat uses proximity sensors to know when
 someone walks into the room, then lights up and shows the temperature in
 a way that’s visible at a glance from across the room. No touching
 required. (Courtesy of Nest.)

The history of technology is also the secret history of the
 microinteractions that, like symbiotic organisms, live alongside them to
 frame, manage, and control them.

The Structure of Microinteractions

What makes effective microinteractions is not only their
 contained size, but also their form. A beautifully crafted
 microinteraction gracefully handles four different parts, which will be
 described next (see Figure 1-13).
[image: The structure of microinteractions.]

Figure 1-13. The structure of microinteractions.

These four parts—the trigger that initiates the microinteraction,
 the rules that determine how the microinteraction works, the feedback that
 illuminates the rules, and loops and modes, the meta rules that affect the
 microinteraction—are a way to design and dissect microinteractions.
The first part of any microinteraction is the
 trigger. With turning off the ringer on an iPhone,
 the trigger is user-initiated, meaning that the user has to do
 something—in this case, flip a switch—to begin the microinteraction. Thus,
 many microinteractions begin with an understanding of user need: what the
 user wants to accomplish, when they want to do it, and how often. This
 determines the affordances, accessibility, and persistence of the trigger.
 In our silencing-the-phone example, turning off the ringer is a very
 common action that users want to perform all the time, rapidly. Thus the
 trigger (the Ringer/Silent switch) is available all the time, instantly
 able to be turned on and off no matter what application is running. It was
 so important, it’s one of only five physical controls on the iPhone.
 Controls—digital and/or physical—are the most important part of
 user-initiated triggers. They provide not only the ability to engage with
 a microinteraction (and sometimes the ability to adjust it while in
 progress), but also usually the visual affordance that the
 microinteraction is even there (see Figure 1-14). If there were no
 ringer on/off switch on the iPhone, you might expect the phone had that
 functionality, but have to guess at where to find it. In many older mobile
 phones (and even in some phones still), silencing the phone was buried
 under several layers of a settings menu. Even for users who knew where the
 setting was, it took as much as 10 seconds to turn the ringer on or off.
 It takes less than a second to flip the physical Ringer/Silent
 switch.
[image: An example of a trigger. In iOS (as in Windows Phone), you can use the camera even on a locked phone. Pressing the camera icon bounces the bottom bar up a little, indicating that you swipe up to get the camera functionality. Of course, slide to unlock is its own trigger as well.]

Figure 1-14. An example of a trigger. In iOS (as in Windows Phone), you can
 use the camera even on a locked phone. Pressing the camera icon bounces
 the bottom bar up a little, indicating that you swipe up to get the
 camera functionality. Of course, slide to unlock is its own trigger as
 well.

Of course, the physical control doesn’t have to be a switch either.
 Although the best designs feel inevitable, there is almost nothing
 designed that could not be designed differently. On Windows Phones, the
 trigger is a pressable rocker button (which also controls volume) that,
 when pressed, presents users with a screen overlay that lets users choose
 ringer status as “vibrate” or “ring + vibrate.”
But triggers need not be user-initiated. Increasingly, triggers are
 system-initiated—when the device or application itself detects that
 certain conditions have been met and begins a microinteraction. The
 triggering condition could be anything from detecting that a new email
 arrived, to the time of day, to the price of a particular stock, to the
 location of the user in the world. For silencing the phone, one could
 easily imagine that function integrating with your calendar, so that it
 automatically silences the phone whenever you’re in a meeting. Or by
 knowing your location, it automatically goes silent whenever you’re in a
 movie theater or symphony hall. As our applications and devices become
 more sensor-full and context-aware, the more ability they could have to
 make decisions on their own about how they operate.
Note
Triggers are covered in Chapter 2.

Understandably, users may want, if not the ability to adjust these
 system-initiated triggers, then at least the understanding of how they
 operate, just as Patron X probably would have liked to know how silencing
 his phone worked. In other words, they want to know the
 rules of the microinteraction.
Once a microinteraction has been initiated, it engages a sequence of
 behavior. In other words: something happens. This usually means turning
 some piece of functionality or interactivity on, but it might just show
 the current state of the application or device. It might use data to guess
 what the user wants to do. In whatever case, it turns on at least one
 rule, and rules can usually be defined by a designer.
[image: An example of a rule. When you’re using the music-streaming service Spotify and then turn it on on another platform, the first instance of Spotify pauses. If you resume playing on the first instance, the second platform will pause. This creates a very frictionless, cross-platform service. (Courtesy Sebastian Hall.)]

Figure 1-15. An example of a rule. When you’re using the music-streaming
 service Spotify and then turn it on on another platform, the first
 instance of Spotify pauses. If you resume playing on the first instance,
 the second platform will pause. This creates a very frictionless,
 cross-platform service. (Courtesy Sebastian Hall.)

Take what is probably the simplest microinteraction there is:
 turning on a light. Once you use the trigger (a light switch), the light
 turns on. In a basic light setup, there is a single rule: the light stays
 on and fully lit until the switch is turned off. You can change that rule,
 however, by adding a dimmer or a motion detector that turns the light off
 when no motion is detected. But the basic turn on switch/turn on light
 rule is very simple, and one that becomes apparent to anyone who uses a
 light, even a child.
With applications or electro-digital devices, the rules can be much,
 much more nuanced and hard to understand, even for small
 microinteractions. In the case of Patron X, it was the interaction with silencing
 the phone that caused the symphony incident, because unless there is a
 specific piece of feedback (and we’ll get to that next), rules are
 themselves invisible. Unlike the mechanical devices of the
 19th century, users generally cannot see the
 activity the trigger has initiated. (This “feature” has been used to
 tremendous effect by hackers, whose victims launch a program that
 unbeknownst to them installs a virus onto their computers.)
Note
Rules are covered in Chapter 3.

Everything we see or hear while using digital devices is an
 abstraction. Very few of us really know what’s happening when we use any
 kind of software or device. Just as examples, you’re not really putting a
 “file” into a “folder” and “email” isn’t really arriving into your
 “inbox.” Those are all metaphors that allow us to understand the
 interactions that are going on. Anything you see, hear, or feel that helps
 you to understand the rules of the system is
 feedback, the third part of microinteractions.
Feedback can take many forms: visual, aural, haptic (vibrations).
 Sometimes it can be prominent and unmistakable, like the light bulb
 glowing when you flip the switch. Sometimes it can be subtle and ambient,
 like the unread badges that appear on email applications and mobile apps.
 It can be as descriptive as a voice telling you exactly where to turn
 while doing turn-by-turn directions, or it can be as ambiguous as an LED
 light blinking in a complicated pattern. It can be as disruptive as the
 fart-like buzz of your phone in your pocket announcing a message, or a
 whisper as a digital panel opens. What is important is to match feedback
 to the action, to convey information in the most appropriate channel
 possible.
In our turning off the ringer on the iPhone example, silencing
 the phone has two pieces of feedback: a screen overlay when the switch is
 turned on or off, and a tiny, visible strip of orange on the actual switch
 when the phone is silent. What doesn’t appear—and what was the downfall of
 Patron X—is any indication that even though the ringer is off, set alarms
 will still sound. There is also no onscreen indicator (other than the
 temporary overlay, which vanishes after a few seconds) that the ringer is
 off. These are design choices.
Even more than with triggers, feedback is the place to express
 the personality of the product. Indeed, feedback could be said, along with
 the overall form, to completely define the product’s personality.
Feedback is not only graphics, sounds, and vibrations; it’s also
 animation (see Figure 1-16).
 How does a microinteraction appear and disappear? What happens when an
 item moves: how fast does it go? Does the direction it moves in
 matter?
[image: An example of feedback. In Coda2, the Process My Order button becomes a progress bar when pressed. The text should change to Processing Order and Order Processed!, however. (Courtesy Christophe Hermann and Little Big Details.)]

Figure 1-16. An example of feedback. In Coda2, the Process My Order button
 becomes a progress bar when pressed. The text should change to
 Processing Order and Order Processed!, however. (Courtesy Christophe
 Hermann and Little Big Details.)

Feedback can have its own rules as well, such as when to appear, how
 to change colors, how to rotate the screen when the user turns a tablet on
 its side. These rules may themselves become their own microinteractions,
 as users might want to adjust them manually as a setting.
Note
Feedback is discussed in Chapter 4.

The last part of microinteractions are the loops and
 modes that make up its meta rules. What happens over time with
 the microinteraction: do the interactions remain until manually turned off
 (as is the case with the Ringer/Silence switch) or do they expire after a
 while? What happens during an interruption or when conditions change? See
 Figure 1-17 for an
 example.
Although it’s often undesirable, some microinteractions have
 different modes. For instance, take the example of a weather app. Its main
 (default) mode is all about displaying the weather. But perhaps users have
 to enter another mode to enter the locations they’d like weather data
 from.
[image: An example of a loop. On eBay, if you’ve bought the same item in the past, the button changes from “Buy it now” to “Buy another.” (Courtesy Jason Seney and Little Big Details.)]

Figure 1-17. An example of a loop. On eBay, if you’ve bought the same item in
 the past, the button changes from “Buy it now” to “Buy another.”
 (Courtesy Jason Seney and Little Big Details.)

Note
Loops and modes are discussed in Chapter 5.

Microinteractions as a Philosophy

There are three ways of incorporating microinteractions into
 products. The first is to think about them on a case-by-case basis. During
 the course of a design project or when simply refining your product, try
 to identify any possible microinteractions. Make a list of them, then
 treat each as such. For each one, deliberately consider the structure as
 outlined in this book, and see if you can polish each individual
 component. You’ll wind up with elegant microinteractions—and possibly
 Signature Moments.
Signature Moments are those microinteractions that are product
 differentiators. A custom trigger control (such as the original iPod’s
 scroll wheel) or an elegant “loading” animation or a catchy sound (“You’ve
 Got Mail!”) can be marketed as though they are features and used
 cross-platform or in other products by the same organization. A Signature
 Moment will help create customer loyalty and recognition. The Like button
 on Facebook is now so well known that it’s part of the brand.
The challenge in working this way is keeping the scope of the
 microinteraction limited. The tendency is to turn them into features,
 because that is the way most designers are used to working. We want to
 tackle big problems and solve everything. Microinteractions are an
 exercise in restraint, in doing as much as possible with as little as
 possible. Embrace the constraints and focus your attention on doing one
 thing well. Mies van der Rohe’s mantra of “less is more” should be the
 microinteraction designer’s mantra as well.
A second way to think about microinteractions is to reduce more
 complex applications to individual products that are each built around one
 microinteraction. This is microinteractions as product strategy: your
 product does one thing and one thing well. Reduce the product to its
 essence, its Buddha nature. If you find you want to add another feature to
 your product, that other feature should be its own product. Many
 appliances, apps, and devices, including the original iPod, follow this
 model. This is how many startups work (or at least began), from Instagram
 to Nest: they did one thing well. The “minimum viable product” can be one microinteraction.
 Working this way justifies and provokes a radical simplicity to your
 product, which allows you to say no to feature requests as they arise. Of
 course, this is also a difficult stance to take, particularly in
 corporations where the inclination is to sell one product that does
 everything their customers might need. Imagine breaking up Microsoft Word
 into individual products! And yet this is what some competitors have done.
 For example, apps like WriteApp are optimized just for writing, with most
 of the functionality of a word-processing program stripped away, so that
 the focus is only on writing, for writers. Evernote began with a simple
 microinteraction: write notes that are available across platforms.
But there is a third way to think about microinteractions, and that
 is that most complex digital products, broken down, are made up of dozens,
 if not hundreds, of microinteractions. You can view a product as the
 result of all these microinteractions working in harmony. This is what
 Charles Eames meant when he said the details are the design. Everything’s
 a detail, everything’s a microinteraction: a chance to delight, a chance
 to exceed users’ expectations. As Dieter Rams said:
I have always had a soft spot in my heart for the details. I
 consider details more important than a great draft. Nothing works
 without details. Details are the essentials. The standard to measure
 quality by.[5]

In short, treat every piece of functionality—the entire product—as a
 set of microinteractions. The beauty of designing products this way is
 that it mirrors the smaller, more agile way of working that many companies
 are embracing. Of course, the pitfall is that you can get lost in the
 microinteractions and not see the big picture, that all the details won’t
 fit together into a coherent whole when you’re finished. And working this
 way takes extra time and effort.
[image: Whether viewing the Standard (“Plan”) or Satellite view of Google Maps, the widget for changing the view shows the map and a preview of the other view behind it. (Courtesy Hugo Bouquard and Little Big Details.)]

Figure 1-18. Whether viewing the Standard (“Plan”) or Satellite view of Google
 Maps, the widget for changing the view shows the map and a preview of
 the other view behind it. (Courtesy Hugo Bouquard and Little Big
 Details.)

This is also a difficult way for agencies—with their notoriously
 fast project schedules—to work. It’s honestly a challenging way for any
 designer to work, as often the attention of clients and stakeholders is
 focused on the big features, not the small details that would enhance
 those features or improve the overall experience. Indeed, it can be
 difficult to get enough time to focus on microinteractions at all.
 Convincing business and development team members that microinteractions
 are worth spending time on can be a challenge. It will likely mean extra
 time for design and development, after all. But it’s worth it.
The disastrous story of Patron X reminds us that microinteractions
 matter, that the designer’s job is to take the tasks that could otherwise
 be frustrating and difficult and make them otherwise. Larry Tesler knew
 this when he decided there had to be a better way to move text inside a
 document, and thus cut and paste were born. Microinteractions can improve
 the world, one tiny piece at a time. And they all start with a
 trigger.

Summary

Microinteractions are the small pieces of functionality that are all
 around us. Focusing on them is the way to create a superior user
 experience.
The history of microinteractions stretches back to the first
 electric devices. Most of the digital standards we’re used to now were
 once novel microinteractions.
A microinteraction is made up of four parts: triggers that initiate
 it, rules that determine how it functions, feedback that the rules
 generate, and the loops and modes that make up its meta-rules.
There are three ways of working with microinteractions: look for
 them and focus on each individually, reduce a complicated feature to a
 core microinteraction, or treat every feature as a set of linked
 microinteractions.

[1] Daniel J. Wakin, “Ringing Finally Ended, but There’s No Button to
 Stop Shame.” The New York Times, January 12,
 2012.

[2] See 100 Quotes by Charles Eames, Charles
 Eames (Eames Office, 2007).

[3] Detailed in Bravo Course Outline by Suzan
 Jerome, published by Xerox, 1976.

[4] As recounted in Dealers of Lightning: Xerox PARC and
 the Dawn of the Computer Age by Michael A. Hiltzik
 (HarperBusiness, 2005).

[5] Dieter Rams in conversation with Rido Busse (1980), reprinted
 in Design: Dieter Rams & (1981).

Chapter 2. Triggers

[image: image with no caption]

In the 1990s, New York City Transit began converting its seven
 million daily bus-and-subway passengers from paying fares with tokens—which
 had been in use since 1904—to paying
 with a MetroCard, a thin, paper-like plastic card. One of the key pieces of
 the city’s conversion plan was the installation of hundreds of vending
 machines all over the five boroughs for riders to purchase and fund these
 new MetroCards. This was no easy task. New York City is home to over eight
 million people, and tens of millions more live in the surrounding tristate
 area. According to a report by the Department of City Planning, in 2000, 36% of New York City
 residents were foreign born; there were enough people speaking a language
 other than English in 2002 to support 40 magazines and newspapers in another
 language.[6] Tens of thousands of residents are visually impaired,
 physically disabled, have little or no schooling, or are illiterate—or some
 combination thereof. The official guide to New York City reports that over
 35 million tourists visit every year (in some years as many as 50 million),
 many of whom will ride the subway, but few of whom are familiar with it or
 know how to buy a MetroCard. In fact, the Metropolitan Transit Authority
 (MTA) had done studies of early MetroCard vending machine prototypes and had
 found that users were intimidated by the physical form and found the user
 interface to be incomprehensible.
Stepping into this challenge were designers Masamichi Udagawa, Sigi
 Moeslinger, and their team at Antenna Design, who were tasked with designing
 the MetroCard Vending Machine.
As Moeslinger recounts,[7] one assumption they had to dispel for themselves was that
 their users had experience using touchscreen-style kiosks. In the mid-1990s,
 few people outside of the service industry (where touchscreens were behind
 bars and fast-food restaurant counters) had much interaction with
 touchscreens, with one exception: automatic teller machines (ATMs). The
 designers assumed that even for the lowest common denominator, they would
 have at least some experience using an ATM. This turned out not to be the
 case—at the time, anecdotally up to 50% of the MTA riders didn’t have a bank
 account, and thus didn’t own an ATM card. They’d likely never used a machine
 like the MetroCard dispenser. “The concept of a touchscreen was really alien
 to them,” said Moeslinger. Just getting these users—millions of them—to
 approach and start using the new, unfamiliar machines was a real
 issue.
Antenna decided to make each screen of the machine only do one task.
 “It simulates a dialog and asks one question per screen,” said Moeslinger.
 (In other words, they made every screen a microinteraction.) There was some
 concern by the MTA that by doing so, it would make the transaction too slow.
 With millions of people using the machines, additional seconds in the
 transaction could cause lines and rider complaints. But the opposite proved
 to be the case. “Having quickly graspable bits of information made the
 transaction much faster than trying to save screens in the steps of the
 process.”
Antenna explored two interaction models: one in which you put your
 money in first, then you select what you want (like a soda machine) and a
 second in which you select what you want first, then pay. Users much
 preferred the second model, but there was still the problem of getting them
 to start using the new machines in the first place.
Their solution: turn the entire touchscreen into one huge trigger (see
 Figure 2-1). As discussed
 in Chapter 1, a trigger is the physical
 or digital control or condition(s) that begins a microinteraction. In this
 case the idle screen—the screen that appears after a transaction is
 completed or when a machine is sitting idle—became a giant call to action:
 TOUCH ME. As you can see in Figure 2-1, Antenna did
 everything short of lighting off signal flares to attract users to the
 trigger. The word “start” appears three times and “touch” twice. The hand
 animates, pointing towards the Start button. But here’s the thing: the whole
 screen is the trigger. You can touch anywhere to begin using the machine.
 The Start button is just a visual cue—a faux affordance—so that people know
 to “push” (when they will actually just tap) it to start. Although it seems
 like the button is the trigger, really it’s the whole screen. It’s a great
 solution to a very hard challenge—and one that is still in use over a decade
 later.
[image: The idle screen from the MetroCard Vending Machine. Antenna Design deliberately overemphasized the trigger, which was not, as one might suspect, the button in the top right. It’s actually the whole screen. (Courtesy Antenna Design.)]

Figure 2-1. The idle screen from the MetroCard Vending Machine. Antenna Design
 deliberately overemphasized the trigger, which was not, as one might
 suspect, the button in the top right. It’s actually the whole screen.
 (Courtesy Antenna Design.)

The MetroCard Vending Machine introduces the first principle of
 triggers: make the trigger something the target users will
 recognize as a trigger in context. This might mean a physical (or
 seemingly physical, as with the fake Start button on the MetroCard Vending Machine) control like a button or a
 switch, or it could be an icon in the task or menu bar. Make it look like
 you can do something, and make it engaging. And while having a large,
 animated glowing finger pointing up to a Start button isn’t the right
 affordance for most microinteractions, it was appropriate—and wildly
 successful—for this context.
Manual Triggers

Where do microinteractions begin? Often they are the very first
 thing a user encounters as they turn a device on or launch an app. The
 on/off switch (or its digital equivalent) is the first trigger they
 encounter. On/off switches are, like the Start screen on the MetroCard,
 examples of manual triggers. (Automatic, system-initiated triggers are
 covered later.)
Manual triggers usually spring from a user want or need: “I want
 to turn the TV on.” “I want to turn the ringer off on this phone.” “I need
 to move this text from one place to another.” “I want to buy a MetroCard.”
 From a strategic point of view, it is critically important to understand
 what a user wants (or needs) to do, when they want to do it, and in what
 context(s) they want to do it. This determines when and where your manual
 trigger should instantiate. It might need to be globally available, like
 an on/off switch, or it might be very contextual, only appearing when
 certain conditions are met, such as being in a particular mode or when the
 user is in a particular functional area of the app. For example, Microsoft
 Office’s “minibar” formatting menu only appears when text has been
 highlighted. You can find out these user needs the usual ways: either
 through design research (observations, interviews, exercises) or through
 intuition and understanding of the subject area. Or you find out the hard
 way: in product testing or when the product is launched or out in the
 field. The point is to match the user need (when and where) with the
 location of the trigger. (See Making manual triggers discoverable.)
The second principle of triggers, although it seems incredible
 to even have to say this, is have the trigger initiate the same
 action every time. This is so users can create an accurate
 mental model of how the microinteraction works. This is violated more
 frequently than one might imagine. Tech reviewer David Pogue on the
 Samsung S Note:
Some of the icons in S Note actually display a different menu
 every other time you tap them. I’m not making this up.[8]

Another example is the Home button on iPhone and iPad, which either
 takes you to the home screen or, if you’re on the home screen, to Search.
 (Not to mention all the other functions that it does when you press it
 twice or press and hold. See Spring-Loaded and One-off Modes in Chapter 5.) While bundling functionality under the home
 button is a great way to reuse limited hardware, the single press that
 takes you to Search instead of doing nothing (or giving some kind of “Hey!
 You’re already there!” feedback) if you’re on the home screen is probably
 a step too far.
Possibly the least effective visible triggers are those that are
 only items in a drop-down menu. As a menu item, the trigger is effectively
 invisible; if the microinteraction isn’t frequently used, having it buried
 in a menu requires users to do a lot of searching to find it. Of course, the alternative
 is to have a visible trigger onscreen for a microinteraction that is infrequently used,
 which might not be the best solution either. Settings are a perfect example of this; users only use them
 infrequently, yet they can be essential for certain apps, so it can be a
 design challenge to figure out how visible the trigger for them needs to
 be.
[image: On the Gnome desktop, rather than a static text file icon, the icon shows the first three rows of text. (Courtesy Drazen Peric and Little Big Details.)]

Figure 2-2. On the Gnome desktop, rather than a static text file icon, the
 icon shows the first three rows of text. (Courtesy Drazen Peric and
 Little Big Details.)

Bring the Data Forward

The third principle of manual triggers is to bring
 the data forward. The trigger itself can reflect the data
 contained inside the microinteraction. Ask yourself, what can I show
 about the internal state of the microinteraction before it is even
 engaged or while a process is ongoing? What are the most valuable pieces
 of information I can show? This requires knowing what most people will
 use the microinteraction for, but you should know that key piece of
 information before you even begin. A simple example is a stock market
 app. Perhaps it indicates (via color or an arrow) the current state of
 the market or a stock portfolio, which could prompt the user to launch
 the microinteraction—or not. The trigger becomes a piece of ambient
 information available at a glance that might lead to using the
 trigger.
The trigger can also indicate where in a process a product is (see
 Figure 2-3 for an
 example). The button you use to start a process (making toast, for
 example) could indicate how long it is until the toast is ready.
[image: Google’s Chrome browser icon (the trigger to launch it) also indicates active downloads and the download’s progress.]

Figure 2-3. Google’s Chrome browser icon (the trigger to launch it) also
 indicates active downloads and the download’s progress.

The Components of a Trigger

Manual triggers can have three components: the control itself,
 the states of the control, and any text or iconographic label.
Controls

For manual triggers, the least you can have is a control
 (see Figure 2-4). The kind of control
 you choose can be determined by how much control you want to
 give:
	For a single action (e.g., fast-forward), a button or a
 simple gesture is a good choice. The “button” in some cases could
 be an icon or menu item, while the gesture could be a movement
 like a tap, swipe, or wave. A button could also be (or be paired
 with) a key command or a gesture.

	For an action with two states (e.g., on or off), a
 toggle switch makes sense. Alternatively, a toggle button could be
 used, although it is often hard to tell at a glance what state the
 button is in—or even that it might have another state. A third
 (and perhaps worst) choice is that of a regular button where a
 single press changes the state. If you choose this method, the
 state the button controls should be absolutely clear. A lamp is
 clearly on or off, so a regular (nontoggle) button could be used
 to turn it on and off.

	For an action with several defined states, a dial is a
 good choice. Aside from having detents, dials can have a push/pull
 toggle state as well. Alternatively, a set of buttons could be
 used, one for each choice.

	For an action along a continuum (e.g., adjusting
 volume) with a defined range, a slide or dial (particularly a jog
 dial, which can spin quickly) are the best choices. Alternatively,
 and particularly if there is no defined range, a pair of buttons
 could be used to change the value up/down or high/low.

	Some manual triggers are made up of multiple controls or
 elements such as form fields (radio buttons, checkboxes,
 text-entry fields, etc.). For example, a microinteraction such as
 logging in might have text-entry fields to put in a username and
 password. These should be used sparingly and, whenever possible,
 prepopulated with either previously entered values or smart
 defaults.

[image: The parts of a control.]

Figure 2-4. The parts of a control.

There are also custom controls that fall outside the
 traditional buttons, switches, and dials—an example being the scroll
 wheel from the original (nontouch) iPods. Custom controls will bring a
 distinct emphasis to your microinteraction, perhaps even making it a
 Signature Moment. Custom controls can also be gestures or touches (see
 Invisible triggers).
The goal for microinteractions is to minimize choice and instead
 provide a smart default and a very limited number of choices. The
 control you select for the trigger should reflect this
 philosophy.
Controls are tightly coupled with visual affordances—what users
 expect can be done, based on sight. The fourth principle of triggers is don’t break
 the visual affordance: if your trigger looks like a button,
 it should work like a button and be able to be pushed.
Making manual triggers discoverable

An important first question to ask is: how noticeable should this
 trigger be? The fifth principle of triggers is that the
 more frequently the microinteraction is used, the more visible it
 should be. Author Scott Berkun has a golden rule for
 discoverability that I’ve adapted for microinteractions. It’s
 this:
Microinteractions that most people do, most often, should be
 highly discoverable. Microinteractions that some people
 do, somewhat often, should be easily discoverable.
 Microinteractions that few people do, infrequently, should take
 some searching to find.[9]

This golden rule will serve you well when determining how
 discoverable your trigger should be.
But how do we discover anything?
There are two ways we as humans become aware of anything in
 our environment. The first is that the item, either through movement
 or sound, causes our attention to involuntarily attune to it. This
 stimulus-driven attention is what kept our ancestors alive, drawing
 their attention to charging rhinos and other dangers in the
 environment. Designers can use this same device to draw attention to
 a trigger by having it move or make noise. Doing this, particularly
 on a desktop or web environment, can be incredibly obnoxious.
 Because we involuntarily focus our attention on movement and sound,
 having a trigger move or make a sound should be reserved for
 high-priority microinteractions—and to have it repetitively do so
 should be reserved for the highest priority microinteractions, such
 as errors and alerts.
The second way we pay attention to anything is when we’re
 actively seeking to find something—when we’re goal-based. We
 actively turn our attention on items/areas to see if we can find
 something that meets our current needs. This attention, unless we
 are impaired or blind, is mostly visual. We turn our bodies, heads,
 or just eyes to visually search for what we’re looking for.
Note
However, it should be noted that our reaction time to sound
 is faster than visual; auditory stimulus takes 8–10 milliseconds
 to reach the brain but visual stimulus takes 20–40
 milliseconds.[10] Reaction time to sound is also faster: 140–160
 milliseconds for sound versus 180–200 milliseconds for
 visual.[11] Again, this makes evolutionary sense. The human eye
 is limited to about 180 degrees horizontal and 100 degrees
 vertical, while hearing is 360 degrees. A predator coming up from
 behind wouldn’t be seen, but could be heard. (Some reptiles and
 birds actually have 360-degree vision.) But while you could (in
 theory) use sound as a kind of sonar to find a trigger, in nearly
 every instance this is impractical.

When we’re searching for something, our field of vision can
 narrow to as little as 1 degree[12] or less than 1% of what we typically see. This
 narrowing of our field of vision has been compared to a
 spotlight[13] or zoom-in lens.[14] We engage in a process of object recognition, wherein
 we identify and categorize items in the environment.
When we’re engaged in object recognition, our eyes are
 looking for familiar shapes, known as geons. Geons are simple shapes
 such as squares, triangles, cubes, and cylinders that our brains
 combine together to figure out what an object is.[15]
Because of geons, it’s especially good practice to make
 triggers, particularly iconic ones, geometric. In general, it’s
 easier to find a target when we’re looking for a single
 characteristic rather than a combination of
 characteristics,[16] so it’s best to keep your triggers visually
 simple—especially if they are going to live in a crowded environment
 such as among other icons.
Once we identify an item (“That’s a button”), we can
 associate an affordance to it (“I can push a button”), unless there
 is another visual cue such as it being grayed out or having a big
 red X over it that negates the affordance. The sixth principle of
 manual triggers is don’t make a false
 affordance. If an item looks like a button, it should act
 like a button. With microinteractions, the least amount of cognitive
 effort is the goal. Don’t make users guess how a trigger works. Use
 standard controls as much as possible. As Charles Eames said,
 “Innovate as a last resort.”
The most discoverable triggers are (from most discoverable
 to least):
	An object that is moving, like a pulsing icon

	An object with an affordance and a label, such as a
 labeled button

	An object with a label, such as a labeled icon

	An object alone, such as an icon

	A label only, such as a menu item

	Nothing: an invisible trigger

Invisible triggers

Manual triggers can also be invisible—there might be no label
 or affordance to let the user know there’s a microinteraction to be
 triggered. Invisible triggers are often sensor-based, made possible
 via touchscreens, cameras, microphones, and other sensors such as
 accelerometers (as in Figure 2-5). However,
 you could also have an invisible trigger that is only
 a command key (Figure 2-6) or a mouse
 movement (to the corner of the screen, for example).
[image: Swiping the button to the left on the Tumblr iPhone app (instead of pressing it) is an invisible trigger for creating a new text blog post. You can also swipe upwards to make a new photo post. (Courtesy Robin van’t Slot and Little Big Details.)]

Figure 2-5. Swiping the button to the left on the Tumblr iPhone app
 (instead of pressing it) is an invisible trigger for creating a
 new text blog post. You can also swipe upwards to make a new photo
 post. (Courtesy Robin van’t Slot and Little Big Details.)

[image: In Alfred’s settings, if you disable the visible triggers, the invisible one becomes highlighted. (Courtesy Hans Petter Eikemo and Little Big Details.)]

Figure 2-6. In Alfred’s settings, if you disable the visible triggers,
 the invisible one becomes highlighted. (Courtesy Hans Petter
 Eikemo and Little Big Details.)

Touchscreen UIs currently contain the most common invisible
 controls. Many multitouch gestures have no visual affordance to
 indicate their presence, and custom gestures beyond the usual taps
 and swipes are often found through a process of trial and error (see
 Figure 2-7).
[image: In Google Maps for iOS, shaking is an invisible trigger for sending feedback. (Courtesy Little Big Details.)]

Figure 2-7. In Google Maps for iOS, shaking is an invisible trigger for
 sending feedback. (Courtesy Little Big Details.)

Voice input is another example of an invisible control.
 There are three kinds of voice controls:
	Always listening
	The product’s microphone is always on and users only
 need to address it (usually by name) to issue a command.
 Microsoft’s Kinect for Xbox works in this manner. “Xbox,
 play!” is an example of this kind of control.

	Dialogue
	The product’s microphone turns on at specific times to
 listen for a response to a prompt. (“Say ‘yes’ to continue in
 English.”) Most automated customer call interfaces work
 thus.

	Combined with a control
	In order to initiate a voice command, a physical control
 has to be engaged first. Apple’s Siri works like this: users
 press and hold the Home button in order to issue voice
 commands.

Gestural controls such as hand waves to turn something on, or
 a shake to shuffle are also often invisible. Like voice controls,
 sometimes there is an initial action (like a wave) or a physical
 control to get the device ready for other gestural commands. With
 Google Glass, tilting your head upwards or touching the side of the
 frame turns on the screen. Touching or being close to a device can
 be an invisible trigger, such as turning on a bathroom sink when
 hands are put under the faucet. Similarly, moving away from an
 object can be a trigger as well, such as automatically flushing a
 toilet when the person has moved away.
Why ever have an invisible trigger? The truth is, no matter
 what the interface, not every item is going to be immediately
 discoverable. Making everything visible and discoverable will often
 mean an incredibly cluttered, complicated, and not easily scannable
 screen. Hiding items makes the screen or object visually simpler,
 while not jettisoning functionality (Figure 2-8). Invisible
 controls allow for an emphasis on what is
 visible, and creates a hierarchy of what’s important. But it is
 important to note that invisibility should not be an explicit goal
 for microinteraction (or any kind of interaction) design; rather it
 should be a byproduct of context and technology: what makes sense to
 hide, given this environment? Or what must we hide because there is
 no place to display a visible control with this technology? The best
 microinteractions have just enough interface, but no more.
[image: Akismet has a clever invisible trigger. When someone right-clicks the logo (presumably to save it), Akismet shows a window with several different resolutions. (Courtesy Fabian Beiner.)]

Figure 2-8. Akismet has a clever invisible trigger. When someone
 right-clicks the logo (presumably to save it), Akismet shows a
 window with several different resolutions. (Courtesy Fabian
 Beiner.)

Invisible triggers should be learnable.
 Once discovered (either through accident, word-of-mouth, or help),
 users often only have their (faulty) memories to rely on to initiate
 the microinteraction again. Being learnable means the invisible
 trigger should be nearly universally available, or alternatively,
 only available under particular conditions. Invisible triggers
 should be guessable, or, ideally, stumbled upon as the user performs
 other actions. For example, scrolling up past the top of a list
 reveals a reload microinteraction.
[image: KanaSwirl’s settings allow for disabling what would otherwise be an invisible trigger (Shake to Pause). (Courtesy Shawn M. Moore and Little Big Details.)]

Figure 2-9. KanaSwirl’s settings allow for disabling what would
 otherwise be an invisible trigger (Shake to Pause). (Courtesy
 Shawn M. Moore and Little Big Details.)

Unless it’s impossible—there is no screen or place to put a
 physical control, such as with Google Glass—never make an invisible
 trigger for a high-priority microinteraction. Try to, at least,
 create a visible trigger for the microinteraction. For example, a
 command key and menu items.

Control states

Some manual triggers have multiple states. Although in most
 cases you won’t have all of these states, when designing a trigger,
 you should consider them:
	Default
	The idle state when there is no activity.

	Active
	If there is an activity working in the background—for
 example, downloading an update or syncing—the trigger could be
 used to indicate that.

	Hover
	Can be used to bring up a tool-tip-style description,
 expand the size of the trigger to reveal more controls or form
 fields, or simply indicate that an item is clickable. Even more
 useful, a hover can display a piece of data that is contained
 within the microinteraction (see Figure 2-10). For
 example, hovering over an icon that launches a weather app could
 show you today’s weather without ever having to launch the app.
 Bring the data forward.
[image: In the Rdio player, hovering over the fast-forward and rewind buttons display the upcoming or previous track. (Courtesy Nicholas Kreidberg and Little Big Details.)]

Figure 2-10. In the Rdio player, hovering over the fast-forward and
 rewind buttons display the upcoming or previous track.
 (Courtesy Nicholas Kreidberg and Little Big Details.)

	Rollover
	Often used to indicate presence or activity, or just an
 added indicator that the cursor is positioned correctly to
 engage (see Figure 2-11).
[image: If you aren’t logged in and roll over the Comment field, YouTube prompts you to sign in or sign up. (Courtesy Marian Buhnici and Little Big Details.)]

Figure 2-11. If you aren’t logged in and roll over the Comment
 field, YouTube prompts you to sign in or sign up. (Courtesy
 Marian Buhnici and Little Big Details.)

	On click/tap/in process
	What happens when the trigger is clicked, tapped, or
 begun. This can mean the trigger disappears, opens, changes
 color, or becomes a progress indicator as the microinteraction
 loads (see Figures 2-12 and 2-14). One variation is that the
 trigger does not launch the microinteraction immediately, but
 expands the trigger to reveal more controls. For example, a Save
 button could open up a panel that asks whether to Overwrite or
 Save As.
[image: Path’s Sign Up button smiles when clicked. (Courtesy Little Big Details.)]

Figure 2-12. Path’s Sign Up button smiles when clicked. (Courtesy
 Little Big Details.)

	Toggle
	Switches and buttons can indicate their current setting
 (left/right, up/down, or pressed/unpressed, respectively). On
 physical devices, switches often make this easier to determine
 this at a glance, unless the button has some accompanying
 indicator, such as an LED that glows when in a pressed
 state.

	Setting
	Dials, switches, and sliders can show what setting or
 stage the microinteraction is currently at (see Figure 2-13).

[image: The play/pause control on Xiami.com indicates the playing time of a song. (Courtesy Little Big Details.)]

Figure 2-13. The play/pause control on Xiami.com indicates the playing
 time of a song. (Courtesy Little Big Details.)

[image: In CloudApp, the Log In button changes state after being clicked to let users know an action is happening in the background. (Courtesy Little Big Details.)]

Figure 2-14. In CloudApp, the Log In button changes state after being
 clicked to let users know an action is happening in the background.
 (Courtesy Little Big Details.)

These indicators of state are usually the trigger itself—the
 trigger changes its appearance or animates—but it can also be an
 indicator light such as an LED positioned near the trigger. For
 example, a glowing red LED near an on/off switch could indicate its
 off setting. It’s good practice to keep any state indicator that isn’t
 attached to the trigger near the trigger. The same applies for any
 “expanded” version of the trigger: don’t open up a window elsewhere.
 Keep the focus on the trigger itself.

Labels

An important part of some triggers are their labels.
 Labels can name the whole microinteraction (e.g., the menu item or
 Microsoft Ribbon item name) or they can be indicators of state, such
 as a name at each detent on a dial. Labels are interface.
The purpose of a label is clarity: is what I’m about to do the
 thing I want to be doing? Labels put a name on an action and create
 understanding where there could otherwise be ambiguity. But because a
 label becomes one more item to scan and parse, only provide a label if
 there could be ambiguity. The better practice is to design the control
 so it has no inherent ambiguity (Figure 2-15).
[image: Vimeo’s cancel/dismiss/not now button is humorously labeled “I hate change.” (Courtesy Joe Ortenzi and Little Big Details.)]

Figure 2-15. Vimeo’s cancel/dismiss/not now button is humorously labeled
 “I hate change.” (Courtesy Joe Ortenzi and Little Big
 Details.)

The seventh principle of manual triggers is to add a
 label only if it provides information that the trigger itself
 cannot. Consider how you could represent the label visually
 instead of by adding text. For instance, imagine a rating system of
 1–5 stars. You could design a slider with numeric labels of 1–5 or you
 could have the trigger be just the five stars that light up one by one
 on hover.
This is obviously not possible or desirable in some cases. A
 missing label on a button can mean that that button is
 indistinguishable from every other button around it and thus is never
 pushed.
Unlike other kinds of product copy (i.e., instructional,
 marketing), microinteraction labels are not typically the place for
 brand creativity; they are utilitarian, to create clarity (see Figures
 2-16 and 2-17). This is not to say to ignore
 whimsy or personality, but to do so only when the label remains clear.
 Google’s “I’m Feeling Lucky” button label might be amusing, but tells
 you absolutely nothing about what is going to happen when you press
 the button. There is no feedforward—an understanding of what is going
 to happen before it happens.[17]
[image: Barnes & Noble’s website has a label that visually indicates case sensitivity. (Courtesy Paul Clip and Little Big Details.)]

Figure 2-16. Barnes & Noble’s website has a label that visually
 indicates case sensitivity. (Courtesy Paul Clip and Little Big
 Details.)

[image: Apple’s iOS Speak Selection setting has an example of a whimsical but clear iconic label, using the fable of “The Tortoise and the Hare.” Although, in cultures where this analogy is unknown, this would certainly be puzzling. (Courtesy Victor Boaretto and Little Big Details.)]

Figure 2-17. Apple’s iOS Speak Selection setting has an example of a
 whimsical but clear iconic label, using the fable of “The Tortoise
 and the Hare.” Although, in cultures where this analogy is unknown,
 this would certainly be puzzling. (Courtesy Victor Boaretto and
 Little Big Details.)

In general, labels need to be short yet descriptive and in clear
 language. “Submit” as a button label may be short, but it doesn’t
 clearly indicate in nontechnical language what action the user is
 about to take. In microinteractions, specificity matters. Being vague
 is the enemy of a good label. Be specific. (For more on this topic,
 see Microcopy in Chapter 3.)
[image: The label on the iPhone’s Slide to Unlock Trigger vanishes as you slide. (Courtesy Little Big Details.)]

Figure 2-18. The label on the iPhone’s Slide to Unlock Trigger vanishes as
 you slide. (Courtesy Little Big Details.)

Consistency is also important. Since labels can be names, be
 sure you title anything you’re labeling (the microinteraction, a
 state, a setting, a piece of data) the same name throughout the
 microinteraction. Don’t call it an “alert” in one part of the
 microinteraction and a “warning” in another part.
The best way to ensure that your labels are successful is to
 write them in the language of those who will use it. If you’re using
 technical terms, your audience had best be technical as well;
 otherwise, use casual, plain language. Secondly, test the labels with
 the target users (see Appendix A). It’s not an exaggeration that a
 majority of usability problems are caused by poor (or no) labeling.

System Triggers

Not all triggers are manual. In fact, we’re likely in the era
 when most triggers aren’t human initiated at all, but instead are system
 initiated. System triggers are those that engage when certain condition(s)
 are met without any conscious intervention by the user, as in Figures
 2-19 and 2-20.
[image: The deliveries app checks if there is a tracking number in the clipboard on launch, and if so, a system trigger launches this microinteraction. It’s also smart enough to indicate from which courier the number is from. (Courtesy Patrick Patience and Little Big Details.)]

Figure 2-19. The deliveries app checks if there is a tracking number in the
 clipboard on launch, and if so, a system trigger launches this
 microinteraction. It’s also smart enough to indicate from which courier
 the number is from. (Courtesy Patrick Patience and Little Big
 Details.)

[image: An example of a system trigger caused by another person. When someone you follow re-blogs someone you don’t on Tumblr, a follow button appears. (Courtesy Brian Jacobs and Little Big Details.)]

Figure 2-20. An example of a system trigger caused by another person. When
 someone you follow re-blogs someone you don’t on Tumblr, a follow button
 appears. (Courtesy Brian Jacobs and Little Big Details.)

These common conditions that can initiate a trigger:
	Errors
	When a system encounters an error, it often addresses the
 problem via a microinteraction, such as asking what to do or simply
 indicating something untoward has happened (see Figure 2-21).

	Location
	Location can be on many scales: from within a country, to a
 particular city or neighborhood, to a particular part of a room. A
 user in any of these settings can cause a microinteraction to
 fire.

	Incoming data
	Email, status messages, software updates, weather,
 brightness, and a host of other data that enter networked devices
 and apps can be triggers for microinteractions such as “You’ve Got
 Mail!” alerts.

	Internal data
	Likewise internal data such as time and system resources can
 be triggers (see Figure 2-22). An example is
 dimming the screen after a set amount of time.

	Other microinteractions
	One particular kind of system trigger is when one
 microinteraction triggers another. A simple example of this is a
 wizard-style interface. The end of step one (a microinteraction) is
 the trigger for step two (another microinteraction), and so on. (See
 Orchestrating Microinteractions in Chapter 6)

	Other people
	In many social interactions, what another person does
 (e.g., reply to a chat, post a picture or message, send a friend
 request) can be the basis for a trigger.

[image: In Windows Phone, the messaging icon (a trigger) changes to a sad face if there was an error sending a message. (Courtesy Wojtek Siudzinski and Little Big Details.)]

Figure 2-21. In Windows Phone, the messaging icon (a trigger) changes to a sad
 face if there was an error sending a message. (Courtesy Wojtek
 Siudzinski and Little Big Details.)

[image: In Ubuntu, if the screen has timed out and locked, another trigger appears that lets a visitor leave a message for the device’s owner. (Courtesy Herman Koos Scheele and Little Big Details.)]

Figure 2-22. In Ubuntu, if the screen has timed out and locked, another
 trigger appears that lets a visitor leave a message for the device’s
 owner. (Courtesy Herman Koos Scheele and Little Big Details.)

Users might not manually initiate these triggers, but it is good
 practice to provide some means (e.g., a setting) of adjusting them. Every
 system-initiated trigger should have some manual means of managing or
 disabling it. Ideally, this is at the point of instantiation, when the
 microinteraction has been triggered (“Stop showing me these alerts”),
 but at a minimum in a settings area.
Additionally, users may want a manual control even when there is a system
 trigger (See Figure 2-23).
 For example, a user might want to manually sync a document instead of
 waiting for it to automatically happen. A manual control can provide
 assurance, as well as the ability to trigger the microinteraction in case
 there is something wrong with the system (e.g., the network connection is
 down, or the sensor didn’t register).
[image: In the Instapaper iPhone app, if you accidentally rotate the phone between portrait and landscape mode and then quickly rotate it back, the Rotation lock setting appears. (Courtesy Richard Harrison and Little Big Details.)]

Figure 2-23. In the Instapaper iPhone app, if you accidentally rotate the
 phone between portrait and landscape mode and then quickly rotate it
 back, the Rotation lock setting appears. (Courtesy Richard Harrison and
 Little Big Details.)

System Trigger Rules

Some system triggers themselves need their own rules, the most
 common of which are when and how often to initiate (Figure 2-24). It can be
 system-resource intensive—draining battery life, or using bandwidth or
 processing power—for a product to be constantly pinging remote servers
 or reading data from sensors.
System trigger rules should answer the following questions:
	How frequently should this trigger initiate?

	What data about the user is already known? How could that be
 used to make this trigger more effective, more pleasurable, or more
 customized? For example, knowing it is the middle of the night could
 reduce the number of times the system trigger initiates. (See Don’t Start from Zero in Chapter 3 for
 more.)

	Is there any indicator the trigger has initiated? Is there a
 visible state change while this is happening? After it’s happened?
 When it is about to happen?

	What happens when there is a system error (e.g., no network
 connection, no data available)? Stop trying, or try again? If the
 latter, what is the delay until trying again? (Loops are covered
 more thoroughly in Chapter 5.)

System trigger rules are closely related to the overall rules,
 which are covered next in Chapter 3.
[image: Navigation app Waze knows when I open the app in the late afternoon, I’m probably driving home and presents this as an option.]

Figure 2-24. Navigation app Waze knows when I open the app in the late
 afternoon, I’m probably driving home and presents this as an
 option.

The best triggers are those that, like the Start screen on the
 MetroCard Vending Machine, fit the context of use and the people who’ll
 use it. The trigger’s control matches the states it has to communicate
 and is appropriately discoverable for how often it will be used. Its
 labels are clear and written in casual language. And most importantly,
 it launches users into the actual interaction—the rules.

Summary

A trigger is whatever initiates a microinteraction. Manual triggers
 are user initiated, and can be a control, an icon, a form, or a voice,
 touch, or gestural command. System-initiated triggers happen when a
 certain set of conditions are met.
Make the trigger something the user will recognize as a trigger in
 context. Have the trigger perform the same action every time.
Bring the data forward. Show essential information from inside the
 microinteraction on the trigger when possible, such as unread messages or
 ongoing processes.
If the trigger looks like a button, it should act like a button.
 Don’t break visual affordances.
The more used a microinteraction is, the more visible the trigger
 should be. Inside a menu is the least visible place for a trigger.
Add labels when there is a need for clarity, when the trigger alone
 cannot convey all the necessary information. Labels should be brief and in
 clear language.
System triggers need rules for defining when and how often they
 appear.

[6] “Ethnic Press Booms In New York City.” Editor &
 Publisher. July 10, 2002.

[7] The full story is told in her 2008 talk “Intervention-Interaction”
 at Interaction08.

[8] “A Tablet Straining to Do
 It All”, The New York Times, August 15,
 2012.

[9] Adapted from Scott Berkun, “The Myth of
 Discoverability”.

[10] Marshall, W. H., S. A. Talbot, and H. W. Ades. “Cortical
 response of the anaesthesized cat to gross photic and
 electrical afferent stimulation.” Journal of
 Neurophysiology 6: 1–15. (1943).

[11] Welford, A. T. “Choice reaction time: Basic concepts.”
 In A. T. Welford (Ed.), Reaction Times.
 Academic Press, New York, pp. 73–128. (1980).

[12] Eriksen, C; Hoffman, J. “Temporal and spatial
 characteristics of selective encoding from visual
 displays”. Perception &
 Psychophysics 12 (2B): 201–204. (1972).

[13] Ibid.

[14] Eriksen, C; St James, J. “Visual attention within and
 around the field of focal attention: A zoom lens model.”
 Perception & Psychophysics 40 (4):
 225–240. (1986).

[15] Geons were first espoused in “Recognition-by-components: A
 theory of human image understanding” by Irving Biederman in
 Psychological Review 94 (2): 115–47.
 (1987).

[16] Treisman, A. “Features and objects in visual processing.”
 Scientific American, 255, 114B–125.
 (1986).

[17] For more on feedforward, see “But how, Donald, tell us how?:
 On the creation of meaning in interaction design through
 feedforward and inherent feedback,” by Tom Djajadiningrat, Kees
 Overbeeke, and Stephan Wensveen, Proceedings of the 4th
 conference on Designing interactive systems: processes, practices,
 methods, and techniques, ACM, New York, NY, USA
 (2002).

Chapter 3. Rules

[image: image with no caption]

In October of 2010 at Apple’s “Back to the Mac” event, Apple
 announced the then-latest version of its desktop operating system, Mac OS X
 Lion (version 10.7), which was released nine months later in July 2011. It
 sold one million copies on its first day, and over six million copies
 afterwards. In it, Apple unveiled new versions of Calendar, Mail, and
 Address Book apps. But there was one microinteraction that garnered a lot of
 attention, mostly because Apple deemed it unnecessary and removed it. That
 microinteraction? Save As.
In the early 1980s, Save used to be Save and Put Away (Xerox Star), or
 Save and Continue alongside Save and Put Away (Apple Lisa). (Put Away
 meaning close.) Save and Continue eventually just became Save, while Save
 and Put Away vanished, probably once more RAM allowed for multiple documents
 to be open at the same time without processor issues. Save As seems to have
 begun in the 1980s as Save a Copy as, which let users save a version as a
 new file without renaming. Eventually some applications had all three: Save,
 Save As, and Save a Copy as. Over time, as people understood the Save As
 paradigm, and with the broad adoption of the Undo command, Save a Copy as
 has mostly vanished.
At the time Apple decided to get rid of Save As, the rules of the
 microinteraction had been fairly stable for about 30 years:
	Make changes to a file.

	Save the file with a new name.

	Subsequent changes happen to the newly created file. The previous
 file remains as it was the last time it was saved.

With Lion, Apple seemed to feel that Autosave, which allows users to
 return to previous versions, would obviate the need for Save As. Lion’s
 rules for saving go something like this:
	Make changes to a file.

	Those changes are autosaved every five minutes.

	Subsequent changes happen to the latest version of the
 file.

	You can rewind to earlier version of the file using the Revert to
 Last command.

	You can also Browse All Versions, which triggers another
 microinteraction: the versions browser.

	After two weeks, the file becomes locked and no changes can be
 made to it without first unlocking it or duplicating it.

If you want to create a separate file, you have to access Duplicate,
 an entirely different microinteraction:
	Use the Duplicate command to make another (cloned) file.

	The new file appears alongside the current file.

	Rename the new (duplicated) file.

	Subsequent changes happen to the newly created file. The previous
 file remains as it was the last time it was (auto)saved.

The new rules were practically the inverse of the previous rules:
 users had to decide before they made changes if they
 wanted the changes to be in a different file. Unfortunately, this is not how
 most people work (or, more precisely, not how we’ve been trained to work
 over the last 30 years). This change severely broke an established mental
 model and replaced it, not with a better microinteraction but with two
 microinteractions that together were difficult to understand and misaligned
 with how most users work. Most people don’t need the previous version of
 their document open at the same time as the altered version. Versioning is
 what programmers do, not what most people do. When users (infrequently) need
 an earlier version of a document, they’ll manually open it.
Response to the change ranged from puzzlement to outright anger: “The
 elimination of the Save As... command in applications such as Pages ’09 and
 TextEdit is, in my view, a downright stupid move. It completely breaks a
 very common workflow for creating a new file, which consists of opening an
 existing file and saving it under a new name,” fumed Macintosh blogger
 Pierre Igot in “Mac OS X 10.7 (Lion): Why
 ditch the ‘Save As’ command?”. “I really tried to make myself
 believe that was an OK decision, but after several months, it was clear that
 it wasn’t,” wrote web developer Chris Shiflett in his article “Apple botches ‘Save As’”.
Apple responded by quietly returning Save As in the 10.8 version of
 their OS, Mountain Lion, in 2012—although not to the menu, it should be
 noted, but as a hidden command—an invisible trigger. But it still didn’t
 work as before: the rules changed again. Lloyd Chambers, author of the
 Mac Performance
 Guide, summed up the changes and problems in “OS X Mountain Lion: Data Loss via ‘Save
 As’”:
If one edits a document, then chooses Save As, then BOTH the edited
 original document and the copy are saved, thus not only saving a new copy,
 but silently saving the original with the same changes, thus overwriting
 the original. If you notice this auto-whack, you can “Revert To” the older
 version (manually), but if you don’t notice, then at some later date
 you’ll be in for a confusing surprise. And maybe an OMG-what-happened
 (consider a customer invoice that was overwritten).

So in Mountain Lion, the rules for Save As work like this:
	Make changes to a file.

	Save the file with a new name.

	Subsequent changes happen to the newly created file. Any changes
 made to the original file are also saved.

	You can rewind to an earlier version of the original file using
 the “Revert to Last” command.

This is in addition to the rules for Saving and Duplicating above. So
 a simple, well-understood microinteraction was replaced by three
 difficult-to-understand microinteractions, with no feedback as to what the
 rules are doing in the background. Finally, in an update to Mountain Lion,
 Apple added a “Keep changes in original document” checkbox in the Save
 dialog. What a mess.
There are some lessons to be learned. If you can’t easily write out or
 diagram the rules of a microinteraction, users are going to have difficulty
 figuring out the mental model of the microinteraction, unless you provide
 feedback to create a “false” model that nonetheless allows users to figure
 out what is going on. Secondly, unless it’s radically new, users likely come
 to a microinteraction with a set of expectations about how it will work. You
 can violate those expectations (and in fact the best microinteractions do so
 by offering an unexpected moment of delight, often by subverting those very
 expectations), but only if the microinteraction is offering something
 significantly better, where the value to the user is
 apparent—and, ideally, instantly apparent. Apple is often amazing at this:
 just as one example, changing the iOS keyboard based on context, so that @
 symbols are available on the main keyboard when filling in an email address
 field. But if the value isn’t instantly apparent, your microinteraction
 could come off as needlessly different, a gimmick. “Things which are
 different in order simply to be different are seldom better, but that which
 is made to be better is almost always different,” said Dieter Rams.[18]
Designing Rules

At the heart of every microinteraction—just as at the center
 of every game—are a set of rules that govern how the microinteraction can
 be used (“played”). What you’re trying to create with rules is a
 simplified, nontechnical model of how the microinteraction
 operates.
Perhaps the most important part of the rules is the goal. Before
 designing the rules, you need to determine in the simplest, clearest terms
 what the goal of the microinteraction is. The best goals are those that
 are understandable (I know why I’m doing this) and achievable (I know I
 can do this). Make sure the goal you’re defining isn’t just a step in the
 process; it’s the end state. For example, the goal of a login
 microinteraction isn’t to get users to enter their password; the goal is
 to get them logged in and into the application. The more the
 microinteraction is focused on the goal rather than the steps, the more
 successful the microinteraction is likely to be. The goal is the engine of
 the rules; everything must be in service toward it (Figure 3-1).
[image: The goal of this microinteraction on Amazon is to prevent users from buying something off their wish list that someone may have purchased already—to prevent a situation...without spoiling the surprise (sort of). (Courtesy Artur Pokusin and Little Big Details.)]

Figure 3-1. The goal of this microinteraction on Amazon is to prevent users
 from buying something off their wish list that someone may have
 purchased already—to prevent a situation...without spoiling the surprise
 (sort of). (Courtesy Artur Pokusin and Little Big Details.)

While the purpose of rules is to limit user actions, it’s important
 that the rules not feel like, well, rules. Users shouldn’t feel like they
 have to follow—or worse, memorize—a strict set of instructions to achieve
 the goal. Instead, what you’re striving for is a feeling of naturalness,
 an inevitability, a flow. The rules should gently guide users through the
 “interaction” of the microinteraction.
[image: In Apple’s Mountain Lion OS, when you turn on Speech and Dictation, the fans in the machine slow down so the background noise doesn’t interfere. (Courtesy Artur Pokusin and Little Big Details.)]

Figure 3-2. In Apple’s Mountain Lion OS, when you turn on Speech and
 Dictation, the fans in the machine slow down so the background noise
 doesn’t interfere. (Courtesy Artur Pokusin and Little Big
 Details.)

The rules determine:
	How the microinteraction responds to the trigger being
 activated. What happens when the icon is clicked? (See
 Don’t Start from Zero later in the
 chapter.)

	What control the user has (if any) over a
 microinteraction in process. Can the user cancel a
 download, change the volume, or manually initiate what is usually an
 automatic process like checking for email?

	The sequence in which actions take place and the
 timing thereof. For example, before the Search button
 becomes active, users have to enter text into the search field.

	What data is being used and from where.
 Does the microinteraction rely on geolocation? The weather? The time
 of day? A stock price? And if so, where is this information coming
 from?

	The configuration and parameters of any
 algorithms. While the rules in their entirety can be
 thought of algorithmically, often certain parts of a microinteraction
 are driven by algorithms. (See the section on Algorithms later in the chapter.)

	What feedback is delivered and when. The rules
 could indicate which “steps” should get feedback and which operate
 behind the scenes.

	What mode the microinteraction is in. A mode is a
 fork in the rules that, when possible, should be avoided. But
 sometimes it’s necessary. For example, in many weather apps, entering
 the cities you want to know the weather for is a separate entry mode
 from the default mode of viewing the weather. See Chapter 5 for more on modes.

	If the microinteraction repeats and how often.
 Is the microinteraction a one-time activity, or does it loop? See
 Chapter 5 for more on loops.

	What happens when the microinteraction
 ends. Does the microinteraction switch to another
 microinteraction? Does it vanish? Or does it never end?

The set of rules may or may not be entirely known to the user,
 and they reveal themselves in two ways: by what can be done and by what
 cannot (see Figure 3-3).
 Both of these can be an occasion for feedback (see Chapter 4), although as the story of Patron X in Chapter 1 demonstrates, sometimes the
 user’s mental model does not match up with the conceptual model that the
 rules create.
[image: MailChimp shows you what can’t be done, by having the poor chimp’s arm stretch so far that it pops off when you try to make an email too wide. (Courtesy Little Big Details.)]

Figure 3-3. MailChimp shows you what can’t be done, by having the poor
 chimp’s arm stretch so far that it pops off when you try to make an
 email too wide. (Courtesy Little Big Details.)

Let’s take perhaps the simplest microinteraction there is: turning
 on a light. The rules are these:
	When the switch is thrown, the light turns on and stays
 on.

	If the switch is thrown again, turn the light off.

Very simple.[19] But if we put a motion sensor on that light, the rules
 become a lot more complicated:
	Check for motion every three seconds.

	If anything is moving, is it human sized? (You don’t want the
 light to go on because a cat ran by.)

	If so, turn on the light.

	Check for motion every three seconds.

	Is anything moving?

	If no, wait for 10 seconds, then turn off the lights.

Of course, all of these rules are debatable. Is three seconds too
 long to check? Or too much: will it use too much power checking that
 often? Maybe you want the light to turn on when a cat runs by. And I think
 many of us have a story about being in a bathroom stall and having the
 lights go out because the sensor didn’t detect any motion—maybe 10 seconds
 is too brief. Needless to say, the rules affect user experience by
 determining what happens and in what order.
Generating Rules

The easiest way to get started with rules is to simply write
 down all the general rules you know. These are usually the main actions
 the microinteraction has to perform, in order. For example for adding an
 item to a shopping cart, the initial rules might be:
	On an item page, user clicks Add to Cart button.

	The item is added to the Shopping Cart.

Very straightforward. But as you continue designing, nuance gets
 added to the rules. For example:
	On an item page, check to see if the user has purchased this
 item before. If so, change the button label from Add to Cart to Add
 Again to Cart.

	Does the user already have this item in the cart? If so,
 change Add to Cart to Add Another to Cart.

	The user clicks button.

	The item is added to the Shopping Cart.

And so on. And that’s just for a button like the one shown in
 Figure 3-4. There could
 be many more rules here.
[image: A simple button rule. If someone is already following you in Mixcloud, the Follow button becomes Follow back. (Courtesy Murat Mutlu and Little Big Details.)]

Figure 3-4. A simple button rule. If someone is already following you in
 Mixcloud, the Follow button becomes Follow back. (Courtesy Murat Mutlu
 and Little Big Details.)

Of course, rules can also benefit from being visualized.
 Sometimes a logic diagram can be useful (see Figure 3-5).
[image: An example of a rules logic diagram.]

Figure 3-5. An example of a rules logic diagram.

A rules diagram can help you see the rules in a visual way, which
 can allow you to notice where actions get (overly) complex. It can also
 show errors in logic that might be hidden by text alone. You can see the
 effect of nuanced rules in Figure 3-6.
[image: Apple’s Pages will automatically add smaller heading styles, but only after you’ve used the smallest displayed style. Heading 3 will only appear as an option once you’ve used Heading 2. (Courtesy Little Big Details.)]

Figure 3-6. Apple’s Pages will automatically add smaller heading styles,
 but only after you’ve used the smallest displayed style. Heading 3
 will only appear as an option once you’ve used Heading 2. (Courtesy
 Little Big Details.)

Verbs and Nouns

It can be helpful to think of your entire microinteraction as
 a sentence. The verbs are the actions that a user can engage in, while
 the nouns are the objects that enable those actions. For example, a
 slider enables the raising or lowering of volume. Verbs are what the
 users can do (raise or lower the volume), and nouns are what they do
 them with (the slider).
[image: When friends Like your run on Facebook, you hear cheers in your headphones while using the Nike+ app. (Courtesy Little Big Details.)]

Figure 3-7. When friends Like your run on Facebook, you hear cheers in your
 headphones while using the Nike+ app. (Courtesy Little Big
 Details.)

Every object in your microinteraction—every piece of UI chrome,
 every form element, every control, every LED—is a noun with
 characteristics and states. The rules define what those characteristics
 and states are. Take a simple drop-down menu. It generally has two
 states: open and closed. When open, it reveals its options, which are
 some of its characteristics. It could have other characteristics, such
 as the maximum number of options and the maximum length of any option
 label. It could also have other states, such as opened with hovers,
 wherein tool tips appear when a user hovers over options. All of these
 details should be defined by the rules. (Verbs, too, have
 characteristics; for example, how fast something is accomplished and how
 long an action takes. These too should be defined in rules.)
Every noun in your microinteraction should be unique. If you have
 two of the same nouns, consider combining them. Also make sure that any
 two (or more) nouns that look the same also behave the same. Don’t have
 two similar buttons that act completely different. Objects that behave
 differently should look differently. Likewise, don’t have the same noun
 work differently in different places. The Back button in Android is
 famous for being seemingly arbitrary about where it takes the user back
 to: sometimes previous modes, sometimes entirely different applications
 [see Ron Amadeo’s article, “Stock
 Android Isn’t Perfect”].
[image: When changing your Apple ID password, must-have items are checked off as the user enters them. It reveals the constraints of the microinteraction in a very literal way. (Courtesy Stephen Lewis and Little Big Details.)]

Figure 3-8. When changing your Apple ID password, must-have items are
 checked off as the user enters them. It reveals the constraints of the
 microinteraction in a very literal way. (Courtesy Stephen Lewis and
 Little Big Details.)

[image: GitHub doesn’t make users select a credit card. Instead it automatically selects it for them by using the number they type into the field to detect what card type it is. (Courtesy of Little Big Details.)]

Figure 3-9. GitHub doesn’t make users select a credit card. Instead it
 automatically selects it for them by using the number they type into
 the field to detect what card type it is. (Courtesy of Little Big
 Details.)

The best, most elegant microinteractions are often those that
 allow users a variety of verbs with the fewest possible nouns.

Screens and States

It might be tempting to turn each step of the rules into its
 own screen; that is, to turn every microinteraction into a wizard-like
 UI. This works for specific kinds of microinteractions—namely those with
 defined, discrete steps that are not done often, or are done only once.
 But for most microinteractions, this would be disruptive and
 unnecessarily break up the flow of the activity. It’s much better to
 make use of state changes instead. In this way, we use progressive
 disclosure to reveal only what is necessary at that moment to make a
 decision or manipulate a control without loading an entirely new screen
 (see Figure 3-10 for an
 example).
[image: When it comes time to enter the CVV number on the Square iOS app, the image of the credit card flips over so that you can immediately see where the number would be. (Courtesy Dion Almaer.)]

Figure 3-10. When it comes time to enter the CVV number on the Square iOS
 app, the image of the credit card flips over so that you can
 immediately see where the number would be. (Courtesy Dion
 Almaer.)

As the user steps through the rules, the objects (nouns) inside
 the microinteraction can (and likely will) change to reflect those
 changes in time. Each of these is a state that should be
 designed.
[image: If multiple friends have their birthdays on the same day, Facebook’s birthday microinteraction lets you write on both of their walls at the same time. (Courtesy Marina Janeiko and Little Big Details.)]

Figure 3-11. If multiple friends have their birthdays on the same day,
 Facebook’s birthday microinteraction lets you write on both of their
 walls at the same time. (Courtesy Marina Janeiko and Little Big
 Details.)

Any objects the user can interact with can have (at least) three
 states:
	An invitation/default state
	This is when the user first finds the object. This is
 also where prepopulated data can be deployed.

	Activated state
	What is the object doing while the user is interacting
 with it?

	Updated state
	What happens when the user stops interacting with the
 object?

Let’s take a simple drag-and-drop as an example. An object’s
 initial/default state should look draggable. Or, barring that, the
 object (and/or the cursor) should have a hover state that indicates the
 object can be dragged. Then the object should likely have another state
 while being dragged. (It’s also possible the screen itself [another
 noun] at this point has a different state, indicating where the object
 could be dropped.) And finally, a state when it is at last dropped,
 which might be simply to return to the default state.
[image: On Twitter, the button to share a link has two idle states: signed in and not signed in. If not signed in, the button allows users to do both at once. (Courtesy Rich Dooley and Little Big Details.)]

Figure 3-12. On Twitter, the button to share a link has two idle states:
 signed in and not signed in. If not signed in, the button allows users
 to do both at once. (Courtesy Rich Dooley and Little Big
 Details.)

A designer of microinteractions pays attention to each state,
 namely because each state can convey information to the user about what
 is happening—even if what is happening is nothing.

Constraints

The rules have to take into account business, environmental,
 and technical constraints. These can include, but certainly aren’t
 limited to:
[image: Yahoo! has a sign up microinteraction that won’t let you put in a future date. Making that field a drop-down with only acceptable years would prevent this error entirely. (Courtesy Little Big Details.)]

Figure 3-13. Yahoo! has a sign up microinteraction that won’t let you put in
 a future date. Making that field a drop-down with only acceptable
 years would prevent this error entirely. (Courtesy Little Big
 Details.)

	What input and output methods are
 available. Is there a keyboard? A speaker?

	What is the type or range of any input.
 For example, the number of characters allowed in a password, or the
 maximum volume a user can turn the sound up to.

	What is expensive. Not just what costs
 money (such as access to certain data services, as in Figure 3-14), but also
 what is expensive from a resources standpoint. Perhaps doing a call
 to the server every 10 seconds would be a massive hit to the server
 load and drain the device battery too quickly.

	What kind of data is available. What
 can be collected from sensors? What services/APIs can
 we access to get information about location, news, weather, time,
 etc.

	What kind of data can be collected. What
 personal (behavioral) data can be collected and used?

[image: When trying to add a free item to a Wish List, iTunes lets you know you can just download it for free instead. (Courtesy Little Big Details.)]

Figure 3-14. When trying to add a free item to a Wish List, iTunes lets you
 know you can just download it for free instead. (Courtesy Little Big
 Details.)

These last two constraints allow you to not start from zero.

Don’t Start from Zero

After the trigger has been initiated, the first question for
 any microinteraction should be: what do I know about the user and the
 context? You almost always know something, and that something can be
 used to improve the microinteraction (Figure 3-15).
[image: The Eventbrite iOS app increases the brightness of the Mobile Ticket screen for easier scanning of the QR code. Useful for the context. The alert is probably unnecessary, however. (Courtesy Phil Metcalfe and Little Big Details.)]

Figure 3-15. The Eventbrite iOS app increases the brightness of the Mobile
 Ticket screen for easier scanning of the QR code. Useful for the
 context. The alert is probably unnecessary, however. (Courtesy Phil
 Metcalfe and Little Big Details.)

Some examples of data that could be used:
	What platform/device is being used

	The time of day

	The noise in the room

	How long since the microinteraction was last used

	Is the user in a meeting

	Is the user alone

	The battery life

	The location and/or direction

	What the user has done in the past

Data can even be useful when it doesn’t come directly from the
 user (Figure 3-16).
[image: Google+ guesses where you work based on your friends’ employment. (Courtesy Artem Gassan and Little Big Details.)]

Figure 3-16. Google+ guesses where you work based on your friends’
 employment. (Courtesy Artem Gassan and Little Big Details.)

That last piece of data—which may be the most important
 one—relies on collecting information about user behavior, but we’re long
 since past the point where this should be an issue from a system
 resources point of view; even low-powered appliances have enough memory
 and processing power to do it. It’s just whether or not human resources
 (developers) can be convinced it’s worthwhile. (It is.) Of course,
 designers should be cognizant of privacy; if the microinteraction deals
 with sensitive subject matter such as medical information, you might
 reconsider collecting personal behavior. Ask: could the information that
 the microinteraction collects be used to embarrass, shame, or endanger
 users? If so, don’t collect it. It’s better to have a depersonalized
 experience than one that is fraught with fear of exposure.
[image: Pro Flowers uses the date to show you the next big holiday when selecting a delivery date. (Courtesy Gabriel Henrique and Little Big Details.)]

Figure 3-17. Pro Flowers uses the date to show you the next big holiday when
 selecting a delivery date. (Courtesy Gabriel Henrique and Little Big
 Details.)

Many of these pieces of data can be used in combination: at 10:00
 every day, the user does X, so perhaps when the microinteraction is
 triggered at that time, offer her X. Or every time the user is in a
 particular location that he hasn’t been to in a while, he does X. Or
 every time the user logs in from her mobile device, she’s interested in
 seeing Y. You can see an example of this in Figure 3-18.
[image: Threadless lets you know when you first land on the site whether it can ship to the country you’re in or not. (Courtesy Little Big Details.)]

Figure 3-18. Threadless lets you know when you first land on the site
 whether it can ship to the country you’re in or not. (Courtesy Little
 Big Details.)

The point is to use the context and previous behavior (if any) to
 predict or enhance the microinteraction (Figure 3-19). This data collection can be thought of as ongoing user
 research; with some analysis you can see how people are using the
 microinteraction and adjust accordingly. For example, by collecting
 behavioral data, you might discover that power users could employ an
 invisible trigger to get them to a certain point in the rules.
 Navigation app Waze lets power users slide (instead of push) a button to
 get directly to Navigation, saving two taps.
[image: Dropbox changes the download instructions based on which browser you’re using. (Courtesy Mikko Leino and Little Big Details.)]

Figure 3-19. Dropbox changes the download instructions based on which
 browser you’re using. (Courtesy Mikko Leino and Little Big
 Details.)

Absorb Complexity

Larry Tesler, the inventor of cut and paste whom we met back in
 Chapter 1, came up with an axiom
 that is important to keep in mind when designing rules: Tesler’s Law of
 the Conservation of Complexity. Tesler’s Law, briefly stated, says that
 all activities have an inherent complexity; there is a point beyond
 which you cannot simplify a process any further. The only question then
 becomes what to do with that complexity. Either the system handles it
 and thus removes control from the user, or else the user handles it,
 pushing more decisions—yet more control—onto the user.
[image: Even in the clunky iCal, there is a nice rule in the selection of a time microinteraction. Rather than have you do the math to figure out how long an event would be, iCal shows you event duration when selecting the end time. It’s an effective use of microcopy. (Courtesy Jack Moffett.)]

Figure 3-20. Even in the clunky iCal, there is a nice rule in the selection
 of a time microinteraction. Rather than have you do the math to figure
 out how long an event would be, iCal shows you event duration when
 selecting the end time. It’s an effective use of microcopy. (Courtesy
 Jack Moffett.)

For microinteractions, you’re going to want to err on the side of
 removing control and having the microinteraction handle most of the
 decision making. One caveat to this is that some microinteractions are
 completely about giving control to the user, but even then there is
 likely to be complexity that the system should handle (Figure 3-21).
[image: When you add a new family member on Facebook, Facebook automatically recognizes the chosen family member’s gender and adjusts the list of possible familial relationships in the list box accordingly. (Courtesy Stefan Asemota and Little Big Details.)]

Figure 3-21. When you add a new family member on Facebook, Facebook
 automatically recognizes the chosen family member’s gender and adjusts
 the list of possible familial relationships in the list box
 accordingly. (Courtesy Stefan Asemota and Little Big Details.)

Start by figuring out where the core complexity lies, then decide
 which parts of that the user might like to have, and when in the overall
 process. Then, if control is absolutely necessary, provide it at that
 time (Figure 3-22).
[image: When hovering over the translation in Google Translate, it highlights the translated phrase in the original text. You can get alternate translations, but only by clicking on the translated text. (Courtesy Shruti Ramiah and Little Big Details.)]

Figure 3-22. When hovering over the translation in Google Translate, it
 highlights the translated phrase in the original text. You can get
 alternate translations, but only by clicking on the translated text.
 (Courtesy Shruti Ramiah and Little Big Details.)

Computers are simply much better at handling some kinds of
 complexity than humans. If any of these are in your microinteraction,
 have the system handle it:
	Rapidly performing computation and calculations

	Doing multiple tasks simultaneously

	Unfailingly remembering things

	Detecting complicated patterns

	Searching through large datasets for particular item(s)

Of course, removing complexity means you must be smart about the
 choices you do offer and the defaults you have.

Limited Options and Smart Defaults

The more options that you give a user, the more rules a
 microinteraction has to have, and in general, fewer rules make for better,
 more understandable microinteractions. This means limiting the choices you
 give to the user and instead presenting smart defaults.
With microinteractions, a good practice is to emphasize (or
 perform automatically) the next action the user is most likely to take.
 This emphasis can be can be done by removing any other options, or just by
 visual means (making the button large, for instance). As game designer
 Jesse Schell put it in his book The Art of Game
 Design (CRC Press), “If you can control where someone is going
 to look, you can control where they are going to go.”
Knowing the next likely step is also valuable in that you can
 perform or present that step automatically, without the user having to do
 anything else (see Figures 3-23 and 3-24). This is one way to link
 microinteractions together (see the section Orchestrating Microinteractions in Chapter 6).
[image: Clicking the Report button on YouTube automatically stops the video you’re about to report. It performs the next likely action for you. (Courtesy Aaron Laibson and Little Big Details.)]

Figure 3-23. Clicking the Report button on YouTube automatically stops the
 video you’re about to report. It performs the next likely action for
 you. (Courtesy Aaron Laibson and Little Big Details.)

[image: Any selected text on a page will prepopulate the caption field when adding it to Pinterest. (Courtesy Louisa Fosco and Little Big Details.)]

Figure 3-24. Any selected text on a page will prepopulate the caption field
 when adding it to Pinterest. (Courtesy Louisa Fosco and Little Big
 Details.)

Every option a user has is at least another rule, so the
 best way to keep your rules to a minimum is to limit options.
 In short, be ruthless in eliminating options. Microinteractions do one
 thing well, so ideally the user would have no options, just smart defaults
 throughout the entire microinteraction. Everyone does one action, and that
 action plays out: from Rule 1 to Rule 2 to Rule 3. This is what made
 Google’s search box the most effective (or at least the most used online)
 microinteraction of the early 21st century.
 Everyone followed the same rules:
	Enter text and press (the emphasized) search button.

	Show search results.

Of course, even here Google added an option: the I’m Feeling Lucky
 button, which took you directly to the top search result. I’m Feeling
 Lucky was only used by 1% of users...and reportedly cost Google $100
 million a year in lost ad revenues. In 2010, Google effectively killed I’m
 Feeling Lucky when it introduced Google Instant, which immediately started
 showing search results as you type, so there is no chance to press the I’m
 Feeling Lucky button.[20] Now the rules look like this:
	Enter text.

	Show search results.

It literally cannot get any simpler, unless at some point in the
 future Google is able to guess what you want to search on and immediately
 shows you results.
For microinteractions, more than one major option is probably too
 many. This is not to say you cannot have choices, such as a temperature
 setting (hot, warm, cold), but rather more than one option that radically
 changes the rules is ill advised. It’s likely that this kind of change
 puts the microinteraction into a different mode (see Chapter 5). One common example of this is the Forgot
 Your Password? Mode that many login microinteractions have. Clicking that
 link takes the user into a different mode that hopefully, eventually takes
 the user back to the main mode to enter the remembered password.
If you are going to make a default decision for a user, in some
 instances there should be some indication of what that decision is. One
 example is Apple’s Calendar notifications. When a calendar notification
 appears (e.g., “Meeting in 15 minutes”) there is a Snooze button the user
 can press. However, there is no indication of the duration of that snooze
 (as it turns out, it’s, in my opinion, an overly long 15-minute snooze)
 and there’s no way to change this default. “Snooze 15 Minutes” would be a
 better button label: one that indicates what the rule is.
The most prominent default should be the action that most
 people do most of the time. Even if you decide that this
 shouldn’t be automatically done for the user, it should be visually
 prominent. The most common example of this are OK/Cancel buttons. Cancel
 is likely pressed considerably less often than OK, so OK should be more
 easily seen (larger and/or colored). And don’t forget the Return key (if
 there is one). Pressing Return should perform the default action.
If you have to present a choice to the user, remember that how you
 present that choice can affect what is chosen. Items at the top and bottom
 of a list are better recalled than those in the middle. A highlighted
 option is more often selected than one that is not. And if the user has to
 make a series of decisions, start with simpler, broader decisions, and
 move toward more detailed options. Colleen Roller, Vice President of
 Usability for Bank of America Merrill Lynch, rightly says that, “People
 feel most confident in their decisions when they understand the available
 options and can comfortably compare and evaluate each one. It’s easiest to
 evaluate the options when there are only a few of them, and they are
 easily distinguishable from each other.”[21]
Since every option means (at least) one other rule (and remember
 we’re trying to keep rules to as few as possible), the options you present
 to a user have to be meaningful. Meaningful choices
 affect how the user achieves the goal of the microinteraction—or even what
 the goal is. An example of a meaningful choice might be to sign in via
 Facebook or to enter a username/password. Nonmeaningful choices are those
 that don’t affect the outcome no matter what is chosen. Amazon’s Kindle
 app makes users select what color highlight they want to highlight
 passages in, even though you can’t search or export by highlight color;
 it’s only marginally meaningful and should probably have been left out of
 the default microinteraction of highlighting. Ask: is giving this choice
 to a user going to make the experience more interesting, valuable, or
 pleasurable? If the answer is no, leave it out.
The elimination of choice should have one beneficial side
 effect: the removal of many possible edge cases. Edges cases are those
 challenging-to-resolve problems that occur only occasionally, typically
 for a small minority of (power) users. Edge cases can cause your
 microinteraction to warp so that you are designing to accommodate unusual
 use cases, not the most common. Edge cases are kryptonite for
 microinteractions, and everything possible should be done to avoid them,
 including revising rules to make them impossible. For example, if a Year of Birth form field is a
 text box, it’s easy to put in invalid dates, such as those in the future.
 Remove this edge case by making the field a drop-down menu.
Controls and User Input

Most microinteractions have some place for manual user input.
 What has to be decided is which controls, and how they manifest. Take
 something as simple as a volume microinteraction. Volume can have three
 states: louder, quieter, and muted. These could appear as three buttons,
 a slider, a dial, two buttons, a scroll wheel, a slider and a button,
 and probably several other variations as well.
With controls, the choice is between operational simplicity and
 perceived simplicity. Operational simplicity gives every command its own
 control. In our volume example, this is the three-button solution: one
 button for Make Louder, one button to Make Quieter, one button for Mute.
 With perceived simplicity, a single control does multiple actions. For
 volume, this would mean selecting the slider or scroll-wheel options.
[image: Google Drive’s Insert Table microinteraction has an expanding hover window that lets users visually determine the size of the table. (Courtesy Kjetil Holmefjord and Little Big Details.)]

Figure 3-25. Google Drive’s Insert Table microinteraction has an expanding
 hover window that lets users visually determine the size of the table.
 (Courtesy Kjetil Holmefjord and Little Big Details.)

For microinteractions that will be done repeatedly, err on the
 side of perceived simplicity, unless it is an action that needs to be
 done quickly and with no chance of error—for example, the Mute button on
 a conference phone; combining it with the Make Quieter action would
 probably be a disaster. For microinteractions that will only be done
 once or occasionally, err on the side of operational simplicity; display
 all the options so that little to no foreknowledge is required.
Text fields should be forgiving of what is placed in them and
 assume that the text could be coming from any number of places,
 particularly from the clipboard or the user’s memory. For example, a
 form for a telephone number should support users putting in any of the
 following: (415) 555-1212, 4155551212, or 415-555-1212. Text fields in
 particular need what system designers call requisite variety—the ability
 to survive under varied conditions. Often this means “fixing” input
 behind the scenes in code so that all the varied inputs conform to the
 format that the code/database needs (see Figure 3-26 for a poor example
 and Figure 3-27 for a
 positive one).
[image: Adobe Photoshop’s Color Picker microinteraction has a place to enter a hex value. However, it’s not smart enough to strip out the # if one is pasted into it. (Courtesy Jack Moffett.)]

Figure 3-26. Adobe Photoshop’s Color Picker microinteraction has a place to
 enter a hex value. However, it’s not smart enough to strip out the #
 if one is pasted into it. (Courtesy Jack Moffett.)

[image: 37signals’ Basecamp gets it right. When you paste an email ID like “Jane Smith <myemail@gmail.com>,” it automatically strips out everything extraneous and leaves just the email address. (Courtesy Harpal Singe and Little Big Details.)]

Figure 3-27. 37signals’ Basecamp gets it right. When you paste an email ID
 like “Jane Smith <myemail@gmail.com>,” it
 automatically strips out everything extraneous and leaves just the
 email address. (Courtesy Harpal Singe and Little Big Details.)

Ordering of lists, such as in a drop-down menu, should be
 carefully thought out. Sometimes it makes sense to have a predetermined
 scheme, such as alphabetical or last used. Other times, it might make
 more sense to be seemingly illogical. For example, if most of your users
 come from the United States, it makes no sense to have them scroll
 through the previous 20 letters of the alphabet to reach the U
 countries—be seemingly irrational and put it at the top of the list or
 else just make it the default.
Sometimes it makes sense to have redundant controls. Particularly
 if your microinteraction is going to be used frequently by the same
 user, it may be wise to design in shortcuts. In desktop software, these
 have traditionally been keyboard shortcuts such as Command-Q for Quit, while on
 touchscreen devices and trackpads they have been a gesture (usually
 multitouch). Just make sure that no significant (to the activity flow)
 control is buried under a shortcut. For any important action, there
 should be a visible, manual way to engage with it.

Preventing Errors

One of the main tasks for rules should be error prevention
 (see Figures 3-28 and 3-29). Microinteractions should follow the Poka-Yoke (“mistake proofing”)
 Principle, which was created in the 1960s by Toyota’s legendary
 industrial engineer Shigeo Shingo. Poka-Yoke says that products and
 processes should be designed so that it’s impossible for users to commit
 an error because the product/process simply won’t allow one. One quick
 example of Poka-Yoke in action is Apple’s Lightning cable. Unlike their
 previous 30-pin connector (and every USB cord), the Lightning cable can
 be plugged into the iPhone’s or iPad’s port facing up or down. Unlike
 with a USB cable, you can’t try to put it in upside down (where it won’t
 fit) because it fits either way.
[image: Gmail gives you a notification before sending the mail to see if you’ve forgotten to attach a file. (Courtesy Little Big Details.)]

Figure 3-28. Gmail gives you a notification before sending the mail to see
 if you’ve forgotten to attach a file. (Courtesy Little Big
 Details.)

[image: If you press the search button on Make Me a Cocktail with nothing in the search field, instead of displaying an error message or nothing, it shows a random cocktail. (Courtesy Nick Wilkins and Little Big Details.)]

Figure 3-29. If you press the search button on Make Me a Cocktail with
 nothing in the search field, instead of displaying an error message or
 nothing, it shows a random cocktail. (Courtesy Nick Wilkins and Little
 Big Details.)

Similarly, you want to design your microinteraction so that the
 rules don’t allow for mistakes to be made (Figure 3-30). This may mean
 reducing user control and input, but for microinteractions reducing
 choice is seldom a bad practice.
[image: Dropbox for iOS pauses uploads when there is a low battery. (Courtesy Little Big Details.)]

Figure 3-30. Dropbox for iOS pauses uploads when there is a low battery.
 (Courtesy Little Big Details.)

Ideally, your microinteraction should be designed so that it does
 not present an error message when the user has done everything right
 (because the user shouldn’t be able to do anything wrong), and only
 presents an error message when the system itself cannot respond
 properly. Pop-up error alerts are the tool of the lazy. If an error does
 occur, the microinteraction should do everything in its power to fix it
 first (see Figure 3-31).
[image: Meetup.com adjusts your search results to attempt to correct the error of no found results. (Courtesy Michael J. Morgan and Little Big Details.)]

Figure 3-31. Meetup.com adjusts your search results to attempt to correct
 the error of no found results. (Courtesy Michael J. Morgan and Little
 Big Details.)

Using the rules, you can also prevent people from using your
 microinteraction in ways it wasn’t intended to be used (see Figures
 3-32 and 3-33). For example, you could disallow
 expletives in comments.
[image: What do you love? won’t let you enter expletives. It just changes the word to “kittens” and shows those results instead. (Courtesy Zachary Reese.)]

Figure 3-32. What do you love? won’t let you enter expletives. It just
 changes the word to “kittens” and shows those results instead.
 (Courtesy Zachary Reese.)

[image: Twitter won’t let you tweet the same message twice, mostly to protect its service from abuse. Detecting a duplicate before the user presses Send would be better, although more system-resource intense. (Courtesy Sindre Sorhus and Little Big Details.)]

Figure 3-33. Twitter won’t let you tweet the same message twice, mostly to
 protect its service from abuse. Detecting a duplicate before the user
 presses Send would be better, although more system-resource intense.
 (Courtesy Sindre Sorhus and Little Big Details.)

Microcopy

Microcopy—labels, instructions, and other tiny pieces of text—is part of
 understanding the rules. Microcopy is a kind of fixed feedback or
 feedforward. The entirety of a microinteraction can be a single piece of
 microcopy: look at Facebook’s Like “button,” which is based entirely on
 the word Like in blue text.
A system trigger could cause an essential piece of microcopy to
 appear when it would be most helpful. For example, on a store’s Contact
 page, a “Sorry, we’re closed” message could appear beside the phone number
 during off hours. And that would be the entire microinteraction right
 there!
With almost all microinteractions, you want to first make sure any
 text is absolutely necessary for understanding; instructional copy for
 microinteractions often isn’t. You don’t usually have to put “Please log
 in” at the top of a login form for users to understand that is what they
 should do. If you do need to include text, make sure it is as short as
 possible. As Winston Churchill so aptly put it, “The short words are the
 best, and the old words best of all.”
Never use instructional copy when a label will suffice.
 Tap Next to Continue is unnecessary if there is a button labeled Next or
 Continue. If a label, such as the name of an album, has to be truncated
 (for space), there should be a way to see the full title on hover or
 rollover (desktop/web apps) or tap/click (mobile). Sometimes, particularly
 with physical buttons, there isn’t enough space for a word and
 manufacturers try to put part of the word on the control, ending up with a
 letter jumble that resembles a customized license plate. This is not
 recommended. If a word doesn’t fit, consider an icon instead.
Avoid labels that could be misinterpreted. On photo-sharing service
 Flickr, for instance, the two choices to navigate photos are ← Previous
 and Next →. However, Previous takes you to the next newer photo, while
 Next takes you to the next older photo (Figure 3-34).
[image: Microsoft’s Powerpoint transparency slider in the Ribbon. There is no label to indicate if you’re making it more or less transparent, and the change doesn’t occur until after you release the slider. (Courtesy Jack Moffett.)]

Figure 3-34. Microsoft’s Powerpoint transparency slider in the Ribbon. There
 is no label to indicate if you’re making it more or less transparent,
 and the change doesn’t occur until after you release the slider.
 (Courtesy Jack Moffett.)

The best place for most labels is above what is going to be
 manipulated. The second best place is on or in the object to be
 manipulated, as Luke Wroblewski notes in “Top, Right, or Left-Aligned Form
 Labels” and “Web Form Design:
 Labels Within Inputs” . This is because it only requires a
 single-eye fixation to take in both the label and the object. In other
 words, the eye doesn’t have to spend time moving between two objects,
 which the mind then has to connect.[22] However, the tradition with icons is the label goes below
 the icon.
Be careful putting a label inside a text form field. When it
 disappears (as it must because the user clicks into it to put text there),
 the user can forget what the field is for, and there is no easy way of
 going back short of clicking out of the text field. It’s better in some
 cases to put the label above (Toy Search) or on a button (Search for Toys)
 alongside, with examples (e.g., “board games, Lego, or dolls”) in the text
 form field itself.
Be sure that any instructional copy matches the control exactly. For
 example, don’t have the instructions read, “Add items to your shopping
 cart,” then have the button say, Purchase Objects instead of Add
 Items.
When possible, make text relational instead of exact, particularly
 dates and times. “Three hours ago” is much easier to understand than
 showing a date and time stamp, which causes users to make translations and
 calculations in their head as to when that was. (Of course, sometimes an
 exact date or time is necessary and shouldn’t be obscured.)
[image: Budge’s setting screen for To Do Reminders uses clear copy and choices to make what could have been a boring form interesting. (Courtesy Paula Te and Little Big Details.)]

Figure 3-35. Budge’s setting screen for To Do Reminders uses clear copy and
 choices to make what could have been a boring form interesting.
 (Courtesy Paula Te and Little Big Details.)

Avoid double (or more!) negatives, unless your intention is to
 confuse or deliberately mislead people. “If you don’t want to unsubscribe
 to our email newsletter, don’t uncheck this box.”

Algorithms

In 1832, a 17-year-old self-taught son of a shoemaker had a
 vision of how “a mind most readily accumulates knowledge ... that man’s
 mind works by means of some mechanism.” Twenty-two years later, as a
 university professor, this former child prodigy published his masterpiece:
 An Investigation of the Laws of Thought, On Which Are Founded
 the Mathematical Theories of Logic and Probability. (Like many
 masterpieces, it was criticized, dismissed, or simply ignored when it was
 first published.) That professor’s name was George Boole, and he was the father of
 what we now know of as Boolean logic.
Boole devised a kind of linguistic algebra, in which the three basic
 operations are AND, OR, and NOT. These operations form the basis for
 generating algorithms. Algorithms are, in the words of Christopher Steiner
 in Automate This: How Algorithms Came to Rule Our
 World (Portfolio Hardcover):
Giant decision trees composed of one binary decision after
 another. Almost everything we do, from driving a car to trading a stock
 to picking a spouse, can be broken down to a string of binary decisions
 based on binary input.
[...]
At its core, an algorithm is a set of instructions to be carried
 out perfunctorily to achieve an ideal result. Information goes into a
 given algorithm, answers come out.

Although the rules could, in a meta fashion, be thought of
 algorithmically, some microinteractions depend on algorithms to run. For
 example, take search. What appears in autofill—not to mention the order of
 the results themselves—is all generated by an algorithm (Figure 3-36). Recommendations,
 driving directions, and most emailed/read are all generated
 algorithmically. Some branded elements, such as Nike FuelBand’s NikeFuel points, are based on an algorithm,
 as is the custom color picker in FiftyThree’s outstanding iPad app,
 Paper.[23]
Traditionally, these algorithms have all been generated by
 engineers, but as more and more products come to rely on algorithms, it
 behooves designers to get involved in their design. After all, a beautiful
 search microinteraction is meaningless without valuable search
 results.
[image: If you’re watching a music video on YouTube, it algorithmically matches your location to the artist’s touring schedule. (Courtesy of Nanakoe and Little Big Details.)]

Figure 3-36. If you’re watching a music video on YouTube, it algorithmically
 matches your location to the artist’s touring schedule. (Courtesy of
 Nanakoe and Little Big Details.)

While the code behind algorithms is far too complex to get into
 here, defining the algorithm is. There are four major parts to any
 algorithm:
	Sequence
	What are the steps in the process? What item comes before
 what? Are there any conditionals, where an action is dependent on a
 particular condition? For a device like the Nike FuelBand, this
 might be something like: for every two steps (as measured by an
 accelerometer in the hardware), add one to NikeFuel.

	Decisions
	These are usually in the form of if ... then statements. For
 example, if the time is 00:00, then reset.

	Repetitions
	How does the algorithm loop? This can be the whole algorithm,
 or just a particular sequence. For example, while the user is typing
 in the search field, update search results every time there is a new
 letter.

	Variables
	Variables are containers for the data that powers algorithms.
 Defining these will allow you to tweak the algorithm without having
 to rewrite it entirely. Number of Search Results could be a
 variable, as could Number of Steps Taken. Variables are numeric,
 alphabetic (text), or logical (true/false).

To put this all together, let’s say a microinteraction involves
 displaying music recommendations. The steps in the sequence are the kinds
 of music you want to show, and in what order. Are they all from one genre?
 Does new music take priority over old? Decisions might include: has the
 user ever listened to this artist before? If so, do not recommend. The
 algorithm might loop until all the recommendations are filled. And
 variables could be genre, artist, album, listened to, similar to, tempo,
 and a whole host of possible characteristics one could use to match music.
 Variables could also include values such as the percentage of new music to
 old, and the total number of recommendations to show.
It can be helpful for users to know what data/variables are being
 acted upon in an algorithm, so that they can manually adjust them if
 possible. For example, knowing how your FuelBand adds FuelPoints would be
 valuable so that users could increase their activity appropriately. As it
 is now, it’s a bit of a mystery. Of course, some algorithms, such as
 Google’s search algorithm, are deeply complex and could not be easily
 explained, especially in microcopy.
What is important to keep in mind from a microinteraction design
 standpoint is what the user is intending to do, and what data/content is
 going to be the most valuable, then ensure that those human values get
 baked into the algorithm. Too often, and too easily, algorithms can be
 designed solely for efficiency, not for value.
The trouble with rules is that, in the end, they are invisible.
 Users can only figure them out when something drastic happens, like
 Apple’s change to Save As, or from the feedback the system provides, which
 is the subject of Chapter 4.

Summary

Rules create a nontechnical model of the microinteraction. They
 define what can and cannot be done, and in what order.
Rules must reflect constraints. Business, contextual, and technical
 constraints must be handled.
Don’t start from zero. Use what you know about the user, the
 platform, or the environment to improve the microinteraction.
Remove complexity. Reduce controls to a minimum.
Reduce options and make smart defaults. More options means more
 rules.
Define states for each object. How do the items change over time or
 with interactivity?
Err on the side of perceived simplicity. Do more with less.
Use the rules to prevent errors. Make human errors
 impossible.
Keep copy short. Never use instructional text where a label will
 suffice.
Help define algorithms. Keep human values in coded decision
 making.

[18] Supposedly said in 1993, and quoted by Klaus Kemp in
 Dieter Rams: As Little Design as Possible, Phaidon
 Press, 2011. Rams may have unknowingly been paraphrasing 18th century
 German philosopher Georg Christoph Lichtenberg, who said, “Ich weiss
 nicht, ob es besser wird, wenn es anders wird. Aber es muss anders
 werden, wenn es besser werden soll.” (“I do not know if it is better if
 it is different. But it has to be different if it is to be
 better.”)

[19] Of course, this isn’t exactly physically how a light switch
 works. Flipping the switch completes an electric circuit—a circular
 path—which allows electrons to flow to the lightbulb. Flipping the
 switch again breaks the circuit. But users don’t need to know this;
 they only need to understand the rule.

[20] Nicholas Carlson, “Google Just Killed The ‘I’m Feeling Lucky
 Button,’” Business Insider, September 8,
 2010.

[21] “Abundance of Choice and Its Effect on Decision Making,”
 UX Matters, December 6, 2010.

[22] For more on eye fixations, see J. Edward Russo, “Eye Fixations
 Can Save the World: A Critical Evaluation” and “A Comparison Between
 Eye Fixations and Other Information Processing Methodologies,” in
 Advances in Consumer Research Volume 05. 561–570
 (1978).

[23] See “The Magical Tech Behind Paper For iPad’s Color-Mixing
 Perfection,” by Chris Dannen in Fast Company,
 November 8, 2012.

Chapter 4. Feedback

[image: image with no caption]

A 56-year-old man punched his fist through the glass and into
 the electronics of the machine. “Yes, I broke the machine and I’d do it
 again,” he told the security guards. (He was sentenced to 90 days in jail.)
 Another man, 59-year-old Douglas Batiste, was also arrested for assaulting a
 machine—by urinating on it. A woman caused $1,800 in damages to another
 machine by slapping it three times.[24] And 67-year-old Albert Lee Clark, after complaining to an
 employee and getting no satisfaction, went to his car and got his gun. He
 came back inside and shot the machine several times.[25]
What device is causing so much rage? Slot machines.
Slot machines are a multi-billion-dollar business. Slot machines take
 in $7 out of every $10 spent on gambling. Collectively, the money they
 generate is in the tens of billions, far surpassing the revenue of other
 forms of entertainment, such as movies, video games, and even
 pornography.[26] The reason that slot machines—microinteraction devices for
 sure—work so well at taking money from people is because of the feedback
 they provide. Most (read: all) of this feedback is insidious, designed
 specifically to keep people playing for as long as possible.
If you are the statistical anomaly who has never seen or played a slot
 machine, they work like this: you put coins, bills, or (in newer machines)
 paper tickets with barcodes into the machine. Pushing a button, tapping the
 touchscreen, or pulling a lever (the trigger) causes three (or more)
 seemingly independent “tumblers” to spin. When they stop spinning after a
 few seconds, if they are aligned in particular ways (if the symbols are the
 same on all three tumblers, for example), the player is a winner and money
 drops out of the slot machine. A committed player can do a few hundred (!)
 spins in an hour.
What really happens is that the rules are rigged in the slot
 machine’s favor; statistically, the slot machine will never pay out more
 than 90%, so the tumblers never “randomly” do anything, although the
 feedback makes it seem that way. If the tumblers actually worked the way
 they appear to work, the payback percentage would be 185% to 297%—obviously
 an undesirable outcome for casino owners. The outcome is “random but
 weighted.” Blank spaces and low-paying symbols appear more frequently than
 jackpot symbols—that is, less frequently than they would if the tumbler were
 actually (instead of just seemingly) random. Thanks to the feedback they
 get, players have no idea what the actual weighting is; an identical model
 can be weighted differently than the machine next to it. Since modern slot
 machines are networked devices, the weighting can even be adjusted from
 afar, on the fly.[27]
No matter how players trigger the tumblers—by pulling the lever
 harder, for example—players cannot influence or change the outcome. Some
 slot machines also have a stop button to stop the tumbler “manually” while
 they spin. This too doesn’t affect the outcome; it only provides an illusion
 of control.[28]
Not only are the tumblers weighted to prevent winning, but they are
 designed to incite what gambling researcher Kevin Harrigan calls the Aww
 Shucks Effect by frequently halting on a “near win,” or a failure that’s
 close to a success (see Figure 4-1). For example, the
 first two tumblers show the same symbol, but the third is blank. These near
 wins occur 12 times more often than they would by chance alone. Research has
 shown that near wins make people want to gamble more by activating the parts
 of the brain that are associated by wins—even though they didn’t
 win![29]
[image: An example of a “near win.” (Courtesy Marco Verch.)]

Figure 4-1. An example of a “near win.” (Courtesy Marco Verch.)

When a player does win, the win is usually small, although the
 feedback is disproportionate to the winning, so that players think they’ve
 won big. Lights flash, sounds play. And the sounds! In the New
 York Times profile of slot machine designer Joe Kaminkow, it
 notes:
Before Kaminkow’s arrival, [slot machine manufacturer] I.G.T.’s
 games weren’t quiet—hardly—but they didn’t take full advantage of the
 power of special effects like “smart sounds”—bright bursts of music. So
 Kaminkow decreed that every action, every spin of the wheel, every
 outcome, would have its own unique sound. The typical slot machine
 featured maybe 15 “sound events” when Kaminkow first arrived at I.G.T. [in
 1999]; now that average is closer to 400. And the deeper a player gets
 into a game, the quicker and usually louder the music.[30]

The slot machine microinteraction is so addictive because it provides,
 via feedback, intermittent reinforcement of behavior.
 Slot machine players keep performing the same behavior until they are
 eventually rewarded. With slot machines, if payout was predictable—if the
 player won every other time, for example—players would quickly get bored or
 annoyed. What keeps people playing is the very unpredictability of the
 payouts, plus the promise that very rarely there will be a big jackpot. In
 general, this is not the kind of reinforcement you want
 for most microinteractions, where you want consistent feedback with positive
 reinforcement (via feedback) of desirable behavior. Predictability is
 desirable.
Slot machines teach us that feedback is extremely powerful and can
 make or break a microinteraction. Visuals and sound combine to make an
 engaging experience out of what could be a repetitive, dull activity of
 pulling a lever over and over. Obviously, they do this to their
 mind-blowingly lucrative benefit and you certainly don’t want every
 microinteraction being like a flashing, noisy slot machine, but the lesson
 is the same: feedback provides the character, the personality, of the
 microinteraction.
Feedback Illuminates the Rules

Unlike slot machines, which are designed to deliberately obscure
 the rules, with microinteractions the true purpose of feedback is to help
 users understand how the rules of the microinteraction work. If a user
 pushes a button, something should happen that indicates two things: that
 the button has been pushed, and what has happened as a result of that
 button being pushed. Slot machines will certainly tell you the first half
 (that the lever was pulled), just not the second half (what is happening
 behind the scenes) because if they did, people probably wouldn’t play—or
 at least not as much. But since feedback doesn’t have to tell users how
 the microinteraction actually works—what the rules
 actually are—the feedback should be just enough for users to make a
 working mental model of the microinteraction. Along with the affordances
 of the trigger, feedback should let users know what they can and cannot do
 with the microinteraction.
One caveat: you can have legitimate, nondeceitful reasons for not
 wanting users to know how the rules work; for example, users may not need
 to know every time a sensor is triggered or every time the device goes out
 to fetch data, only if something significant changes. For example, you
 don’t often need to know when there is no new email message, only when
 there is a new one. The first principle of feedback for microinteractions is to not
 overburden users with feedback. Ask: what is the least amount
 of feedback that can be delivered to convey what is going on (Figures 4-2 and 4-3)?
[image: In Batch, when the flash is on, the camera icon on the shutter button gets a white flash indicator. (Courtesy Little Big Details.)]

Figure 4-2. In Batch, when the flash is on, the camera icon on the shutter
 button gets a white flash indicator. (Courtesy Little Big
 Details.)

[image: Google Docs slants the cursor when you’re typing in italics. Microsoft Word does this as well. (Courtesy Gregg Bernstein and Little Big Details.)]

Figure 4-3. Google Docs slants the cursor when you’re typing in italics.
 Microsoft Word does this as well. (Courtesy Gregg Bernstein and Little
 Big Details.)

Feedback should be driven by need: what does the user need to know
 and when (how often)? Then it is up to the designer to determine what
 format that feedback should take: visual, audible, or haptic, or some
 combination thereof.
[image: Amazon puts the item counter inside the shopping cart button. (Courtesy Matthew Solle and Little Big Details.)]

Figure 4-4. Amazon puts the item counter inside the shopping cart button.
 (Courtesy Matthew Solle and Little Big Details.)

[image: Sometimes it’s important to indicate what didn’t happen. When recommending an app via email, Apple’s App Store tells you that you haven’t been added to any email lists. (Courtesy Little Big Details.)]

Figure 4-5. Sometimes it’s important to indicate what didn’t happen. When
 recommending an app via email, Apple’s App Store tells you that you
 haven’t been added to any email lists. (Courtesy Little Big
 Details.)

Feedback should occur:
	Immediately after a manual trigger or following/during
 a manual adjustment of a rule. All user-initiated actions
 should be accompanied by a system acknowledgment (see Figure 4-6). Pushing a button
 should indicate what happened.

	On any system-initiated triggers in which the state of
 the microinteraction (or the surrounding feature) has changed
 significantly. The significance will vary by context and
 will have to be determined on a case-by-case basis by the designer.
 Some microinteractions will (and should) run in the background. An
 example is an email client checking to see if there are new messages.
 Users might not need to know every time it checks, but will want to
 know when there are new messages.

	Whenever a user reaches the edge (or beyond) of a
 rule. This would be the case of an error about to occur. Ideally,
 this state would never occur, but it’s sometimes necessary, such as
 when a user enters a wrong value (e.g., a password) into a field.
 Another example is reaching the bottom of a scrolling list when there
 are no more items to display.

	Whenever the system cannot execute a
 command. For instance, if the microinteraction cannot send
 a message because the device is offline. One caveat to this is that
 multiple attempts to execute the command could occur before the
 feedback that something is amiss. It might take several tries to
 connect to a network, for example, and knowing this, you might wait to
 show an error message until after several attempts have been
 made.

	Showing progress on any critical process, particularly
 if that process will take a long time. If your
 microinteraction is about uploading or downloading, for example, it
 would be appropriate to estimate duration of the process (see Figure 4-7).

[image: Pixelmator’s eyedropper tool shows you the color you’ve chosen inside the pipette. (Courtesy Little Big Details.)]

Figure 4-6. Pixelmator’s eyedropper tool shows you the color you’ve chosen
 inside the pipette. (Courtesy Little Big Details.)

Feedback could occur:
	At the beginning or end of a process. For
 example, after an item has finished downloading.

	At the beginning or end of a mode or when switching
 between modes.

[image: Transmit 4 shows in one progress bar both the total transfer and individual transfers. (Courtesy Stef van der Feen and Little Big Details.)]

Figure 4-7. Transmit 4 shows in one progress bar both the total transfer and
 individual transfers. (Courtesy Stef van der Feen and Little Big
 Details.)

[image: On Quora, you can see if someone is answering the question you’re looking at. (Courtesy Allison Ko and Little Big Details.)]

Figure 4-8. On Quora, you can see if someone is answering the question you’re
 looking at. (Courtesy Allison Ko and Little Big Details.)

Always look for moments where the feedback can demystify what the
 microinteraction is doing; without feedback, the user will never
 understand the rules.
Feedback Is for Humans

While there is certainly machine-to-machine feedback, the feedback
 we’re most concerned with is communicating to the human beings using the
 product. For microinteractions, that message is usually one of the
 following:
	Something has happened

	You did something

	A process has started

	A process has ended

	A process is ongoing

	You can’t do that

Once you know what message you want to send, the only decisions
 remaining are how these messages manifest. The kind of feedback you can provide depends entirely upon
 the type of hardware the microinteraction is on. On a mobile phone, you
 might have visual, audible, and haptic feedback possible. On a piece of
 consumer electronics, feedback could only be visual, in the form of
 LEDs.
[image: Humans respond to faces. The Boxee logo turns orange and “goes to sleep” when there is no Internet connection. (Courtesy Emil Tullstedt and Little Big Details.)]

Figure 4-9. Humans respond to faces. The Boxee logo turns orange and “goes
 to sleep” when there is no Internet connection. (Courtesy Emil
 Tullstedt and Little Big Details.)

[image: The Threadless shopping cart face turns from frowning to happy when you put items in it. (Courtesy Ahmed Alley and Little Big Details.)]

Figure 4-10. The Threadless shopping cart face turns from frowning to happy
 when you put items in it. (Courtesy Ahmed Alley and Little Big
 Details.)

[image: The Gmail iPhone app shows what not to do: randomly put a smiley face for a message that isn’t necessarily a happy one. (Courtesy Steve Portigal.)]

Figure 4-11. The Gmail iPhone app shows what not to do: randomly put a
 smiley face for a message that isn’t necessarily a happy one.
 (Courtesy Steve Portigal.)

Let’s take a microinteraction appliance like a dishwasher as an
 example. The dishwasher process goes something like this: a user selects
 a setting, turns the dishwasher on, the dishwasher washes the dishes and
 stops. If someone opens the dishwasher midprocess, it complains. Now, if
 the dishwasher has a screen, each of these actions could be accompanied
 by a message on the screen (“Washing Dishes. 20 minutes until
 complete.”). If there is no screen, there might be only LEDs and sounds
 to convey these messages. One option might be that an LED blinks while
 the dishwasher is running, and a chime sounds when the washing cycle is
 completed.
Text (written) feedback is not always an option (for example, if
 there is no screen or simply no screen real estate). Once we move past
 actual words—and let’s not forget that a substantial portion of the
 planet’s population is illiterate: 793 million adults, according to the
 Central Intelligence
 Agency—we have to convey messages via other means: sound,
 iconography, images, light, and haptics. Since they are not text (and
 even words can be vague and slippery), they can be open to
 interpretation. What does that blinking LED mean? When the icon changes
 color, what is it trying to convey? Some feedback is clearly learned
 over time: when that icon lights up and I click it, I see there is a new
 message. The “penalty” for clicking (or acting on) any feedback that
 might be misinterpreted should be none. If I can’t guess that the
 blinking LED means the dishwasher is in use, opening the dishwasher
 shouldn’t spray me with scalding hot water. In fact, neurologically,
 errors improve performance; how humans learn is when our expectation
 doesn’t match the outcome.
The second principle of feedback is that the best feedback is
 never arbitrary: it always exists to convey a message that
 helps users, and there is a deep connection between the action causing
 the feedback and the feedback itself. Pressing a button to turn on a
 device and hearing a beep is practically meaningless, as there is no
 relationship between the trigger (pressing the button) or the resulting
 action (the device turning on) and the resulting sound. It would be much
 better to either have a click (the sound of a button being pushed) or
 some visual/sound cue of the device powering up, such as a note that
 increases in pitch. Arbitrary feedback makes it harder to connect
 actions to results, and thus harder for users to understand what is
 happening. The best microinteractions couple the trigger to the rule to
 the feedback, so that each feels like a “natural” extension of the
 other.

Less Is More

The more methods of feedback you use, the more intrusive the
 feedback is. An animation accompanied by a sound and a haptic buzz is
 far more attention getting than any of those alone. The third
 principle for microinteractions feedback is to convey the most with the
 least. Decide what message you wish to convey (“Downloading
 has begun”) then determine what is the least amount of feedback you
 could provide to convey that message. The more important the feedback
 is, the more prominent (and multichannel) it should be.
[image: In Cornerstone, the number of segments in the spinning activity wheel are equal to the number of processes happening in the background. (Courtesy Yusuf Miles and Little Big Details.)]

Figure 4-12. In Cornerstone, the number of segments in the spinning activity
 wheel are equal to the number of processes happening in the
 background. (Courtesy Yusuf Miles and Little Big Details.)

The fourth principle of feedback is to use the
 overlooked as a means of message delivery. Many
 microinteractions contain conventional parts of any interface—as they
 should. These overlooked parts of the UI—scrollbars, cursors, progress
 bars, tooltips/hovers, etc.—can be used for feedback delivery. This way,
 nothing that isn’t already there will get added to the screen, but it
 can communicate slightly more than is usual (Figure 4-13). For example, a
 cursor could change color to gray if the user is rolling over an
 inactive button.
[image: OS X Lion’s cursor changes to tell you when you can’t resize a window in a particular direction. (Courtesy Little Big Details.)]

Figure 4-13. OS X Lion’s cursor changes to tell you when you can’t resize a
 window in a particular direction. (Courtesy Little Big
 Details.)

Feedback as a Personality-Delivery Mechanism

Unlike the more utilitarian trigger and any controls for the
 rules, feedback can be a means of creating a personality for your
 microinteraction—and for your product as a whole. Feedback can be the
 moment to inject a little edge or a touch of humor into your
 microinteraction (see Figures 4-14 and 4-15).
[image: When there is a long upload time, Dropbox suggests you eat a candy bar while waiting. (Courtesy John Darke and Little Big Details.)]

Figure 4-14. When there is a long upload time, Dropbox suggests you eat a
 candy bar while waiting. (Courtesy John Darke and Little Big
 Details.)

The reason you’d want to do that is that, as pointed out previously,
 feedback is for humans. We respond well to human responses to situations,
 even from machines. Humans anthropomorphize our products already,
 attributing them motivations and characteristics that they do not possess.
 Your laptop didn’t deliberately crash and your phone isn’t mad at you.
 Designers can use this human tendency to our advantage by deliberately
 adding personality to products. This works particularly well for
 microinteractions; because of their
 brevity, moments of personality are more likely to be endearing, not
 intrusive or annoying.
[image: If your SMS gets too long, Google Voice stops counting characters and says, “Really?” (Courtesy Zoli Honig and Little Big Details.)]

Figure 4-15. If your SMS gets too long, Google Voice stops counting characters
 and says, “Really?” (Courtesy Zoli Honig and Little Big
 Details.)

Take Apple’s natural-language software agent Siri, for example.
 Siri easily could have been extremely utilitarian, and indeed, for most
 answers, “she”—it—is. But for questions with ambiguous or no possible
 factual responses like “What is the meaning of life?” Siri offers up
 responses such as “I don’t know. But I think there’s an app for that.” In
 other words, what could have been potentially an error message (“I’m sorry. I can’t answer that.”) became
 something humorous and engaging. Indeed, errors or moments that could be
 frustrating for users such as a long download are the perfect place to
 show personality to relieve tension (see Figure 4-16).
[image: For the Internet Movie Database (IMDb), the 500 error message is based on a movie quote. (Courtesy Factor.us and Little Big Details.)]

Figure 4-16. For the Internet Movie Database (IMDb), the 500 error message is
 based on a movie quote. (Courtesy Factor.us and Little Big
 Details.)

Feedback with personality can, of course, be annoying if not done
 well or overdone. You probably don’t want the login microinteraction
 giving you attitude every time you want to log in. And you might not want
 an app to chastise you if you forget your password: “Forgot your password
 again? FAIL!” What you should strive for is a veneer of
 personality. In the same way that being too human is creepy for
 robots—the so-called “uncanny valley”[31]—so too is too much personality detrimental for
 microinteractions. A little personality goes a long way (Figure 4-17). Making them too
 human-like not only sets expectations high—users will assume the
 microinteraction is smarter than it probably is—but can also come across
 as tone-deaf, creepy, or obnoxious.
[image: Twitter for mobile acknowledges typing on a phone is difficult and may cause errors when logging in. (Courtesy Joris Bruijnzeels and Little Big Details.)]

Figure 4-17. Twitter for mobile acknowledges typing on a phone is difficult
 and may cause errors when logging in. (Courtesy Joris Bruijnzeels and
 Little Big Details.)

Speaking of creepy, while you want to collect and use behavioral
 data (and be transparent about what data you’re collecting) to improve (or
 create) the microinteraction over time, being obvious (providing feedback)
 about collecting that data is a fast way to appear intrusive and
 predatory. You want people to be delighted with the personalization that
 data collection can provide, without being disgusted that data collection
 is going on.

Feedback Methods

We experience feedback through our five senses, but mostly through
 the three main ways we’ll examine here: sight, hearing, and touch.
Visual

Let’s face it: most feedback is visual. There’s a reason for
 that, of course, in that we’re often looking directly at what we’re
 interacting with, so it is logical to make the feedback visual. Visual
 feedback can take many forms, from the blinking cursor that indicates
 where text should go, to text on a screen, to a glowing LED, to a
 transition between screens.
[image: Nike+ App shows your slowest and fastest pace on its route map. (Courtesy David Knepprath and Little Big Details.)]

Figure 4-18. Nike+ App shows your slowest and fastest pace on its route map.
 (Courtesy David Knepprath and Little Big Details.)

Unless no screen or LED is available, assume that your default
 feedback is visual. Almost every user-initiated action (with the
 exception of actions users cannot do, such as clicking where there is no
 target) should be accompanied by visual feedback. With system-initiated
 triggers and rules, only some should have accompanying visual
 feedback—namely those that would require human intervention (e.g., an
 error indicator) or those that provide information a user may want to
 act upon (e.g., a badge indicating a new voicemail has arrived). Ask
 what the user needs to see to make a decision, then show that in as
 subtle a way as possible. Often what the user needs to be aware of is
 resources: time, effort, unread messages, etc.
[image: Navigon app changes its background when you go into a tunnel, as well as indicating how long before you reach the tunnel’s end. (Courtesy Little Big Details.)]

Figure 4-19. Navigon app changes its background when you go into a tunnel,
 as well as indicating how long before you reach the tunnel’s end.
 (Courtesy Little Big Details.)

Don’t show redundant visual feedback. For instance, never have a
 tooltip that mirrors the button label. Any visual feedback must add to
 clarity, not to clutter. Similarly, don’t overdo a visual effect; the
 more frequent the feedback is, the less intrusive it should be. Don’t
 make something blink unless it must be paid
 attention to.
[image: Github uses a tooltip to show the absolute timestamp. (Courtesy Scott W. Bradley and Little Big Details.)]

Figure 4-20. Github uses a tooltip to show the absolute timestamp. (Courtesy
 Scott W. Bradley and Little Big Details.)

Visual feedback should also ideally occur near or at the point of
 user input. Don’t have an error message appear at the top of the screen
 when the Submit button is on the bottom. As noted in Chapter 2, when we’re attentive to something, our field of
 vision narrows. Anything outside of that field of vision can be
 overlooked. If you need to place visual feedback away from the locus of
 attention, adding movement to it (e.g., having it fade in) can draw
 attention to it.
[image: SoundCloud places the download size into a tooltip. This only works if the majority of users don’t care about download size. (Courtesy David L. Miller and Little Big Details.)]

Figure 4-21. SoundCloud places the download size into a tooltip. This only
 works if the majority of users don’t care about download size.
 (Courtesy David L. Miller and Little Big Details.)

Animation

Our brains respond powerfully to movement, so use animation
 sparingly. If you can do without animation, avoid it. Your
 microinteraction will be faster and less cognitively challenging
 without it. That being said, tiny, brief animations can add interest
 and convey meaning if done well (Figure 4-22).
[image: On iPhones, the spinner next to the network speed spins faster or slower depending on the network speed. For instance, Edge networks spin slower than 3G ones. (Courtesy Little Big Details.)]

Figure 4-22. On iPhones, the spinner next to the network speed spins
 faster or slower depending on the network speed. For instance, Edge
 networks spin slower than 3G ones. (Courtesy Little Big
 Details.)

The most important part of animation in microinteractions is
 that it indicates—accurately—a
 behavioral model of how the microinteraction works. Don’t have a panel
 slide in from the left if it isn’t going to slide out to the right, or
 if the user accesses it by swiping down. Animation for animation’s
 sake is deadly. The best animations communicate something to
 the user: about the structure of the microinteraction, what
 to look at, what process is happening, etc.
Google’s Android engineers Chet Haase and Romain Guy have
 devised a set of UI characteristics for animation. Animations should
 be:
	Fast
	Do not delay the activity

	Smooth
	Stuttering or choppy movements ruin the effect and make
 the microinteraction seem broken

	Natural
	They seemingly obey natural laws, such as gravity and
 inertia

	Simple
	Meaningful, understandable

	Purposeful
	Not just as eye candy

[image: In Android (Ice Cream Sandwich versions), the screen skews if you try to scroll past where there are items. (Courtesy Tony Mooch and Little Big Details.)]

Figure 4-23. In Android (Ice Cream Sandwich versions), the screen skews if
 you try to scroll past where there are items. (Courtesy Tony Mooch
 and Little Big Details.)

On this last point, designer and engineer Bill Scott outlines
 the reasons for using animation:[32]
	Maintaining context while changing
 views. Scrolling a list or a flipping through a
 carousel allows you see the previous and next items.

	Explaining what just happened. That
 poof of smoke means the item was deleted.

	Showing relationships between objects.
 For example, animating one item going into another at the end of a
 drag-and-drop.

	Focusing attention. As an item changes
 value, an animation can make that change more obvious.

	Improving perceived performance.
 Progress bars don’t decrease the time needed for a download to
 happen, but they do make the time seem less grating.

	Creating an illusion of virtual space.
 How (and where) panels slide in and out, for example.
 Transitions can be an important part of
 microinteraction animations as users move from one state to
 another, or from one mode to another. Transitions help give a
 sense of location and navigation, letting users know where they
 are and where they are going to.

	Encouraging deeper engagement.
 Interesting animations invite interaction.

Scott has a valuable rule for animation timing: make any
 animation half as long as you think it should be. And then possibly
 halve the timing again (as detailed in Designing
 Web Interfaces, O’Reilly). Animation should make
 the microinteraction more efficient (by illuminating the mental model
 or providing a means of directing attention) or at least
 seem more efficient, not less.

Messages

Designer Catriona Cornett tells of her experience updating the
 in-car Ford SYNC system. After putting the update on a USB drive to
 plug in to the car, she read these instructions:
“Follow your printed out instructions exactly with your
 vehicle running. Approximately 60 seconds after you begin the
 installation, you will hear an ‘Installation Complete’ message. DO
 NOT REMOVE your USB drive or turn off your vehicle. You must wait an
 additional 4–18 minutes until you hear a second ‘Installation
 Complete’ message before you can remove your USB drive.”
OK, so, even though it will give me a message saying it’s
 complete, it’s really not, and if I didn’t read this little note
 about the process, it makes it sound like I could cause some form of
 irreversible damage. Great.[33]

“Installation Complete” is clear enough as a message, in the
 above described case, unfortunately it’s misleading. Any messages
 delivered as feedback to an action should—at a minimum—be accurate. As
 with instructional copy, any text as feedback should be short and
 clear. Avoid words like “error” and “warning” that provide no
 information and serve to only increase anxiety. Feedback text for any error messages should not only indicate
 what the error was, but also how to correct it. Ideally, it would even
 provide a mechanism for correcting the error alongside the message.
 For example, don’t tell a user only that an entered password is wrong,
 provide the form field to re-enter it and/or a means of retrieving
 it.
While any text should be direct (and human), it’s best to avoid
 using personal pronouns such as “you.” “You entered the wrong
 password” is far more accusatory and off-putting than “Password
 incorrect.” Likewise, avoid using “I,” “me,” or “my,” as these are the
 uncanny valley of feedback copy. Although they can have human-like
 responses, microinteractions aren’t human. Some voice interfaces like
 Siri can get away with using first-person pronouns, but in written
 form it can be jarring.
The ideal microinteraction text is measured in words, not lines,
 and certainly not paragraphs or even a single paragraph (Figure 4-25). Keep copy short
 and choose verbs carefully, focusing on actions that could or need to
 be taken: “Re-enter your password.”
[image: When you try to view your stats right away on Feedburner, you get this message. It would be better if it gave a more definite time to return.]

Figure 4-24. When you try to view your stats right away on Feedburner, you
 get this message. It would be better if it gave a more definite time
 to return.

[image: Banking service Simple explains in one pithy line exactly what is going to happen in the future. (Courtesy Little Big Details.)]

Figure 4-25. Banking service Simple explains in one pithy line exactly
 what is going to happen in the future. (Courtesy Little Big
 Details.)

Audio

As noted in Chapter 2, sound can be a
 powerful cue that arrives quickly in our brains—more quickly than visual
 feedback. We’re wired to respond to sound (and, as noted above,
 movement). Since it provides such a strong reaction, audio should be
 used sparingly. However, audio can
 be particularly useful on devices with no screens, or as part of
 microinteractions that work in the background when the user isn’t fully
 paying attention to them. It can also be useful in situations where
 looking at a screen can be unsafe, such as while driving.
In general, there are two ways to use audible feedback: for
 emphasis and for alerts. Audio for emphasis is typically for reinforcing
 a user-initiated action, as a confirmation that what the user thought
 happened actually did. Clicking a button and hearing a click is an
 example. These are often combined with visual feedback, and audio
 combined with visuals has been shown to be more effective than visuals
 alone.[34] The other kind of audio feedback—alerts—are typically
 indicators of system-initiated actions: a process has ended, a condition
 has changed, or something is wrong. A voice telling you to turn left in
 a navigation app is an example of an audio alert.
Any audio cue for a microinteraction should pass the
 Foghorn Test: is this action important enough that
 users would want to become aware of it when they cannot see it? Even if
 you think the answer is yes, you should possibly provide a mechanism to
 turn the sound off.
Like other feedback, audio can be adjusted if there is an
 understanding of the context of use. Some HTC phones buzz and ring
 loudly in their user’s pockets or purses (the phone knows it is there
 via sensor data) and diminish in volume as the user removes them. Some
 automobiles increase the volume of music to compensate as the engine
 gets louder. Similarly, if the user isn’t in the room with a device
 (detected via a proximity sensor) or the noise in the room is loud
 (detected by a microphone), volume and pitch could increase. And sound
 cues could also turn on (or increase in volume) if the device knows you
 are in a situation where visual cues are compromised, such as while
 driving (detected via GPS).
Sound designer Karen Kaushansky also cautions designers to
 consider the “non-use-case” when designing audio: when does audio not
 make sense? Broadcasting a sound—particularly voices—into an empty room
 in the middle of the night can be both startling and annoying.[35]
Earcons

There are two kinds of audio feedback: earcons and words.
 Earcons—a play on the word “icons” (“eye-cons”)—are short, distinct
 sounds meant to convey information.[36] The amount of information that earcons can convey is
 limited, however, and sometimes words are necessary. Words are
 recorded (spoken) or computer-generated text. Words are particularly
 useful for instructions or directions, although if your product has to
 be in many languages, localization of the text could be nontrivial.
 Speech is also much slower than earcons; what can be conveyed in a
 fraction of a second with an earcon could take several seconds in
 speech—a ping versus “You’ve got mail!”
Earcons are, by their very nature, abstract, so care should be
 taken to select a sound that could indicate the message being
 conveyed. For microinteractions, the best earcons are those that users
 (consciously or unconsciously) can relate to other sounds they have
 heard and make associations. For example, the click of a latch closing
 can be the earcon for the microinteraction ending, or an upward whoosh
 can accompany an item moving to the top of a list. Avoid earcons that
 are too shrill (except for critical warnings) or too soft (“Did I just
 hear that?”). As with animation, the best earcons are brief: under one
 second in duration, and usually a fraction of a second. One exception
 is an ambient sound to indicate an ongoing process, such as a drone to
 indicate a file being synced.
Any earcon should also match the emotional content being
 conveyed. Is the feedback urgent or just utilitarian? A warning or an
 announcement? The qualities of the earcon (timbre, pitch, duration,
 volume) should match what is being communicated.
If you want your earcon to be iconic and memorable (a Signature
 Sound), it should contain two to four pitches (notes) played in
 succession.[37] As you don’t necessarily want your microinteraction to
 be memorable, this trick should be used only once per
 microinteraction, if at all. Most microinteraction earcons should be a
 single-pitch sound, played once. Beware of playing any earcon in a
 loop, as even the softest, gentlest sound can be irritating played
 over and over and over.
Earcons should be unique to an action. Just as you want to avoid
 using the same visual feedback for different actions, you shouldn’t
 use the same—or even similar-sounding—earcons for dissimilar events.
 This is especially true for alert sounds that could be triggered
 independent of user actions. If the user is looking away from (or
 isn’t close to) the device, the user won’t be sure of which action
 just happened.

Speech

If you’re going to use words as audio feedback, keep the
 spoken message brief and clear. If there is a prompt for a response,
 make the choices clear, short, and few. Ideally with
 microinteractions, any voice responses would be “Yes” or “No,” or at
 worst a single word. As noted in Chapter 3,
 microinteractions are the place for smart defaults, not multiple
 choice. Any word prompt should be at the end of the message. Use “To
 turn sound off, say yes” instead of “Say yes to turn sound off.”
 Always end with the action.
With speech, your choice is to use actors to record the
 messages, or to use text-to-speech (TTS). Recorded messages have the
 advantage of feeling more human and can have more texture and nuance,
 although care has to be taken to make sure the actors convey the right
 message and tone via their inflections and pauses. The minus is that
 any time you change the message, it has to be rerecorded.
If the messages are dynamic (for example, turn-by-turn
 directions), TTS is probably your only option, as you would unlikely
 be able to record every street name. Although TTS has improved in
 recent years, it can still feel inhuman and impersonal, and some
 people actively dislike it, so use with care.

Haptics

Haptics, or as they are technically known, “vibrotactile feedback.”
 Haptics are vibrations, usually generated by tiny motors, which can
 create a strong, tactile buzz or more delicate tremors that can simulate
 texture on flat surfaces. Compared to the decades of visual and audio
 feedback, haptics is relatively new, with the majority of people only
 having experienced it with the advent of pagers and mobile
 phones.
Haptics, since they are mostly felt (although the vibration can
 make noise against a hard surface like a tabletop), are best utilized on
 devices the user will be in close proximity to (by holding, touching,
 wearing, or carrying), although they can also be embedded in objects
 like furniture to enhance entertainment like movies and games. Faces and
 hands (particularly fingertips) are the most sensitive to haptics, while
 legs and torso are much less so.
Even more than vision and hearing, our sense of touch (technically
 our cutaneous sense) is limited. Not by our skin, which is extensive
 (although of varying sensitivity to touch), but by our brains. There are
 four kinds of fibers known as mechanoreceptors that convey cutaneous
 sense, each of which can detect different frequencies. The different
 mechanoreceptors engage in crosstalk with each other, the result of
 which determines what we can feel—which, as it turns out, isn’t much.
 One researcher claims the amount of information we can get from touch is
 1% that of hearing.[38] Most people can only easily detect three or four levels of
 vibration.[39] Thus, complex messages are not readily conveyed with
 haptics.
Luckily, complex messages are usually unnecessary with
 microinteractions. Haptics have three main uses for microinteraction
 feedback. The first is to enhance a physical action, such as by
 simulating the press of a button on a touchscreen, or by giving an added
 jolt when the ringer of your phone is turned off. The second (and
 currently most common) use of haptics is as an alert when audio isn’t
 available or is undesirable. The vehicle-initiated vibration of the
 steering wheel to wake a sleepy driver is an example of this use. The
 third (and thus far rarest) use is to create an artificial texture or
 friction on surfaces such as touchscreens. This can be used to slow down
 scrolling, for instance.
Because of humans’ limited ability to detect differences in
 haptics, they are currently best used in microinteractions for either
 subtle, ambient communication or for a disruptive alert. There’s very
 little middle ground, except perhaps in specialty devices, like those
 for musicians and surgeons, where varying levels of haptics can provide
 more physical feedback while doing an action like making music or
 performing surgery.

Feedback Rules

Feedback can also have its own set of rules that dictate its
 instantiation. Feedback rules define:
	Contextual Changes
	Does the feedback change based on the known context? For
 instance, if it is night, does the volume increase? Decrease?

	Duration
	How long does the feedback last? What dismisses it?

	Intensity
	How bright/fast/loud/vibrating is the effect? Is it ambient or
 noticeable? Does the intensity grow in time, or remain
 constant?

	Repetition
	Does the feedback repeat? How often? Does the effect remain
 forever, or just for a few seconds?

[image: Foursquare makes a plea for help when you pull down too far to refresh. (Courtesy Tory Briggs.)]

Figure 4-26. Foursquare makes a plea for help when you pull down too far to
 refresh. (Courtesy Tory Briggs.)

These rules can determine much of the character of the
 feedback.
If you don’t want your users feeling cheated and putting their fists
 through the screen as they do with slot machines, look to your feedback.
 Make the rules understandable, and inform them of changes in state when
 appropriate. Make the feedback consistent, rewarding positive
 behavior.
Sometimes it’s not just a piece of feedback that repeats, it’s the
 whole microinteraction. In Chapter 5, next, we’ll
 discuss how to use loops and modes to extend your microinteraction.

Summary

Understand what information the user needs to know and when. All
 feedback relies on this understanding.
Feedback is for understanding the rules of the microinteraction.
 Figure out which rules deserve feedback.
Determine what message you want to convey with feedback, then select
 the correct channel(s) for that message.
Look at context and see if the feedback can (or should) be altered
 by it.
Be human. Feedback can use a veneer of humanity to provide
 personality to the microinteraction.
Use preexisting UI elements to convey feedback messages. Add to what
 is already there if you can before adding another element.
Don’t make feedback arbitrary. Link the feedback to the control
 and/or the resulting behavior.
Whenever possible, have visual feedback for every user-initiated
 action. Add sound and haptics for emphasis and alerts.

[24] Nir, Sarah Maslin, “Failing to Hit Jackpot, and Hitting Machine
 Instead,” The New York Times, July 13, 2012.

[25] “Man charged with shooting slot machine,” Associated Press,
 February 13, 2012.

[26] Rivlin, Gary, “The Tug of the Newfangled Slot Machines,” The
 New York Times, May 9, 2004.

[27] Richtel, Matt, “From the Back Office, a Casino Can Change the Slot
 Machine in Seconds,” The New York Times, April 12,
 2006.

[28] All from Kevin Harrigan’s “The Design of Slot Machine Games,”
 2009.

[29] Clark, L, Laurence, A., Astley-Jones, F., Gray, N., “Gambling
 near-misses enhance motivation to gamble and recruit brain-related
 circuitry,” Neuron 61, 2009.

[30] Rivlin, Gary, “The Tug of the Newfangled Slot Machines.” The
 New York Times.

[31] For a more complete definition and analysis of the uncanny
 valley, see “The Truth About Robotic’s Uncanny Valley: Human-Like
 Robots and the Uncanny Valley,” Popular
 Mechanics. January 20, 2010.

[32] “Anti-Pattern: Animation Gone Wild - Borders.com,” July 16,
 2008.

[33] “UX principles in
 action: Feedback systems and Ford SYNC”, July 11,
 2011.

[34] Brown, Newsome, and Glinert, “An experiment into the use of
 auditory cues to reduce visual workload,” 1989.

[35] See “Guidelines for Designing with Audio,” Smashing
 Magazine.

[36] Blattner, Meera M., Sumikawa, Denise A., and Greenberg,
 Robert M., “Earcons and Icons: Their Structure and Common Design
 Principles,” Journal of Human-Computer Interaction, Volume 4,
 Issue 1, 1989.

[37] See previous footnote, and Kerman, Joseph,
 Listen, Bedford/St. Martin’s, 1980.

[38] R. T. Verrillo, A. J. Fraioli, and R. L. Smith, “Sensation
 magnitude of vibrotactile stimuli,” Perception &
 Psychophysics, vol. 6, pp. 366–372, 1969.

[39] Gill, John, “Guidelines for
 the design of accessible information and communication technology
 systems”. Royal Institute of the Blind, 2004, and F. A.
 Geldard and C. E. Sherrick, “Princeton cutaneous research project,
 report no. 38,” Princeton University, Princeton, NJ, 1974.

Chapter 5. Loops and Modes

[image: image with no caption]

On January 4, 2004, a 400-pound, six-wheeled, solar-powered
 robot landed on Mars, in the massive impact crater Gusev. The robot was the
 $400-million-dollar Spirit rover that had taken over a
 year to build. As Passport to Knowledge reported, Spirit had
 just survived the six-month journey to the Red Planet and a perilous
 landing, including bouncing as high as a four-story building on first impact
 with the surface. The Jet Propulsion Laboratory (JPL) team that built and
 commanded the rover thought the worst was behind them. They were
 wrong.
Once the (literal) dust—red—had settled, Spirit
 began its mission of taking pictures and performing scientific experiments,
 rolling toward a nearby destination (“Sleepy Hollow”). But then on January
 21, less than three weeks into the mission, something happened. NASA’s Deep
 Space Network lost contact with Spirit.
At first, the rover’s disappearance was blamed on a thunderstorm in
 Australia disrupting the network, but no, there was something wrong with
 Spirit itself. The next day, a transmission arrived from
 Spirit: a single beep that indicated the rover was
 still there, but that was all. This was seriously bad. If the problem was a
 critical hardware failure, the robot was dead and its mission was
 effectively over.
Trying a number of methods, JPL finally coaxed the rover to send
 diagnostic data, which it did on January 23. Much of the data was just
 repeated nonsense, but it did give them some insight into what was
 happening. The news wasn’t good: higher internal temperature than was
 expected, and lower battery voltage. Normally, the rover’s computer is only
 on five or six hours a day to save battery power and to prevent it from
 overheating, but the data showed the rover wasn’t going into sleep mode, and
 thus burning battery power and overheating. If this condition continued, the
 rover would destroy itself. As Mark Adler, one of the tactical mission
 managers, put it, “What we had on our hands was one sick rover.
 Spirit had insomnia, a fever, was getting weaker all
 the time, was babbling incoherently, and was largely unresponsive to
 commands.”
Note
Adler’s gripping first-person account can be read in full in
 “Spirit Sol 18 Anomaly,” by the Planetary Society Blog at this link.

Frantic, the command team sent Spirit a SHUTDWN_DMT_TIL (“shutdown dammit until”) command,
 which puts the rover to sleep. Spirit accepted the
 command and the JPL team breathed a sigh of relief. Just to make sure, they
 sent a beep to the rover; if Spirit was really asleep,
 it wouldn’t respond.
It did.
Spirit wasn’t responding to commands, and because
 the Earth was “setting” inside the crater, the JPL didn’t have another
 chance to try something else until the next day. Meanwhile,
 Spirit was overheating and running out of power. Time
 was running out.
The JPL team regrouped to figure out what exactly was happening.
 They came up with a working theory: that Spirit was in
 fault mode, meaning it was trying to reboot itself after encountering a
 problem that it couldn’t solve—basically just like all of us do with our
 gadgets when they become unresponsive. The problem was that Spirit seemed to be
 trapped in fault mode, rebooting itself over and over. It was encountering a
 problem while rebooting.
Later, it would be figured out the problem was with a software update
 that had happened while the rover was en route to Mars. During the update, a
 utility to delete the old software files was uploaded, but the upload failed
 and no one noticed—or else it was ignored. The result was that there was
 less file space available because it was being taken up by the older files.
 So when Spirit started running experiments and saving
 data, the file system overflowed. To try to fix it,
 Spirit rebooted itself. (This was what it was supposed
 to do.) The problem was that the reboot couldn’t complete due to
 insufficient available file space, which Spirit tried
 to fix by rebooting. And thus an infinite loop of reboots was
 entered.[40]
The command team didn’t know this at the time; they just guessed
 Spirit was repeatedly rebooting and had to figure out
 how to stop it before the rover was irreparably damaged. JPL suspected that,
 since the problem persisted through reboots, the issue was either the flash
 memory, the EEPROM, or a hardware fault. (If it had been hardware, the rover
 would be irreparable.) Fortunately, the rover engineers had anticipated
 problems with the flash memory and EEPROM, so they’d designed a way the
 rover could be booted without ever touching the flash memory: the radio that
 received commands from Earth could also execute a limited number of commands
 itself, one of which was telling the computer to reboot without using flash
 memory. The JPL team sent the command to the radio several times before it
 finally worked and the loop was broken. Relieved, JPL retrieved some data,
 and put Spirit into a long-overdue sleep.
Luckily, this story has a happy ending, in that
 Spirit returned to full operation on February 5, 2004,
 and continued operating for years, even though its solar panels were
 designed only to last three months and even after getting stuck in a sand
 trap for two years. The last successful communication with
 Spirit was in March 22, 2010—nearly seven years longer
 than JPL expected—and NASA officially ended Spirit’s
 mission on May 25, 2011 after “a stressful Martian winter without
 much sunlight. With inadequate energy to run its survival heaters, the rover
 likely experienced colder internal temperatures last year than in any of its
 prior six years on Mars.” As of this writing (March 2013),
 Spirit’s twin rover, Opportunity,
 which arrived three weeks after Spirit, is still
 exploring the surface of Mars.
A mode, like Spirit’s fault mode, is a special
 part of an application in which the app operates differently than usual.
 Often, this means actions like pressing a key does something else when in a
 particular mode. A loop, like the reboot one Spirit was
 stuck in, is traditionally a command or series of commands that is repeated.
 (As we’ll see, it’s defined slightly differently for microinteractions.) As
 the near disaster with Spirit reveals, loops and modes
 can be tricky things, even for the conservative, thorough NASA.
Modes

A mode is a fork in the rules, and for microinteractions,
 modes should be used very, very sparingly. Most microinteractions should
 be mode-free, but sometimes they are necessary. The best reason to have a
 mode is when there is an infrequent action that would otherwise clutter
 the microinteraction’s main purpose. One common mode is a settings mode, wherein the user specifies
 something about the microinteraction. When you’re in settings mode, you’re
 not usually performing the major task, just modifying it. It’s separate
 from the rest of the interaction. Examples of this are in weather (see
 Figure 5-1) or stock
 market apps, when you select cities or stock ticker symbols to get data on
 them. You’re not performing the main action of the microinteraction; it’s
 a deviation in the rules that takes you away to do one subtask, then
 return.
[image: An example of a mode from Apple’s Weather App for iOS.]

Figure 5-1. An example of a mode from Apple’s Weather App for iOS.

The reason to avoid modes in general is that they can cause
 errors, especially if the mode is just an invisible state the screen is
 in. Turning on an edit mode, for example, makes a once-familiar screen
 something the user has to relearn. An action, such as clicking an item,
 could do drastically different tasks: selecting the item in default mode,
 deleting it in delete mode. The fewer modes—and in microinteractions,
 there should be no more than one, and zero if possible—the less chance of
 users being confused about what mode they are in, and the less they have
 to learn about how the microinteraction works.
If you must have a mode, a good practice for microinteractions
 is to make it its own screen whenever possible (or whenever there is even
 a screen). (This is the one exception to the “don’t make a screen for
 every rule” principle discussed in Chapter 3.) This will
 help reduce errors and frustration, because it will hopefully make it
 clearer to the user they are in a different mode, not just an unfamiliar
 state. A transition to the new mode—and back to the previous (default)
 mode—can be a useful cue here as well, indicating to the user they are
 going somewhere else to do something specific.
When a user goes to one mode and comes back to the previous mode,
 they expect the original mode to be in the same state as they left it,
 although perhaps any changes performed while in the other mode will be
 reflected in the default mode. For example, in a weather app, if I add
 another city in the Add a City mode, when I return to looking at weather
 data, I should see the new city there.
Spring-Loaded and One-off Modes

It’s annoying to have to switch to a different mode to perform
 one simple action. Two variations of modes that could be used in
 microinteractions in addition to (or in place of) traditional modes are
 spring-loaded modes and one-off modes. With either of these variations,
 the user can’t get trapped in an unknown mode.
Spring-loaded modes (sometimes called
 quasimodes[41]) are only active when a physical action such as pressing a
 key or holding down a mouse button is occurring. As soon as the action
 stops, so does the mode. The classic example is pressing the Shift key
 on your keyboard, which turns on caps lock mode, but only while pressing
 the Shift key. The Alt, Option, and Command keys also often turn on a
 spring-loaded mode.
The value of a spring-loaded mode is that the user seldom forgets
 that they are in a different mode, because they are doing something
 physical to make that mode possible, and it doesn’t require switching to
 a different screen. The drawback is that it doesn’t work well for
 actions that take some time to execute or require complex input.
For microinteractions, spring-loaded modes are best used
 sparingly, and probably mostly on devices and appliances. Pressing and
 holding a Start key can cause a reboot or reset, for example.
Spring-loaded modes can also be an invisible trigger that brings
 users to a microinteraction. Autofill in a search field is an example of
 this. Autofill only appears when there is text in the field, so it’s a
 type of spring-loaded mode.
The same is mostly true with one-off modes. One-off
 modes are when a user initiates a mode that lasts for the
 duration of a single action, then the mode turns off. For example,
 double-tapping on text in iOS brings up its cut-and-paste features,
 which disappear after one command has been selected. Newer versions of
 Microsoft Office have a so-called “minibar” of formatting tools that
 appears only when a user highlights some text. And in OmniGraffle, after
 a single use, a selected tool (such as the line tool) reverts back to
 its default state (the pointer). One-off modes are most useful for rapid task switching (as in
 OmniGraffle) or for contextual use (as in Office and iOS).
One-off modes can also be helpful for gestural and voice
 microinteractions. For example, in some voice interfaces, such as on the
 Xbox with Kinect, a command word (in this case “Xbox” being it), could
 be the trigger, which initiates a one-off mode in which another command
 could be issued. “Lights! Dim!” or “TV! Off!” (A fictional version of
 this is in Star Trek: “Computer, Locate Commander
 Riker!”) Similarly, with gestural interfaces, one gesture such as a wave
 could trigger the microinteraction, putting it into one-off mode in
 which another gestural command could be issued. In both these cases,
 one-off modes prevent accidental triggering. In both these examples, the
 one-off mode would have to time out after a certain period of time, and
 for that, you need a loop.

Loops

A loop (in microinteraction parlance) is a cycle that repeats,
 usually for a set duration. The cycle can be microseconds, minutes, days,
 or even years. Loops are all about timing, determining the pace and the
 overall lifespan of the microinteraction. Although most microinteractions
 are generally short in duration, they or parts of them can repeat, and
 thus have a longer “life” than just a brief moment.
A loop is something indicated (directly or indirectly) via the
 rules. “Get data every 30 seconds” or “Run for three minutes, then stop”
 or “Send a reminder in 10 days” are all example indicators that a loop is
 involved.[42]
Styles of Loops

We’re concerned with four kinds of loops:
	Count-Controlled (For) Loop
	This repeats for a set number of
 times before ending. For example, check if there is network
 connectivity 10 times before giving an error message.

	Condition-Controlled (While) Loop
	This repeats while a certain set of
 conditions is met. If the conditions change or end, so does the
 loop. If there is a network connection, check for new Twitter
 messages every minute.

	Collection-Controlled Loop
	Similar to a Count-Controlled loop, this loop runs through
 everything in a set, then stops. Example: for each unread email,
 add one to the unread counter.

	Infinite Loop
	A loop that begins and never ends until there is an
 error or someone shuts it down. As with the story of the
 Spirit rover, these are generally to be
 avoided, but a microinteraction like turning on a light basically
 starts an infinite loop: the light doesn’t turn off again until
 the whole microinteraction is turned off or the light bulb burns
 out.

Additionally, there are two kinds of loops: open or closed.
 Microinteractions make use of both for different purposes.
 Open loops do not respond to feedback; they execute
 and end. (“Every day at 10pm, turn on a light.”) Closed
 loops have a feedback mechanism built in and are thus
 self-adjusting. For example, a closed loop could be one that, while the
 car is running, checks the engine noise level and adjusts the car stereo
 volume accordingly.
As with the algorithms we discussed in Chapter 2, defining the parameters of loops can contribute
 mightily to the user experience. Too few cycles in a loop can make the
 experience feel rushed or intrusive; too long a loop could make the
 experience sluggish and nonresponsive. Figure 5-2 shows an example of
 a timing loop.
[image: Moo starts a timing loop after an order has been placed, to show users how long they have to edit a recently placed order. (Courtesy Matt Donovan and Little Big Details.)]

Figure 5-2. Moo starts a timing loop after an order has been placed, to
 show users how long they have to edit a recently placed order.
 (Courtesy Matt Donovan and Little Big Details.)

Loops can be used to make sure an action doesn’t go on too long or
 end a process or even the entire microinteraction. This could be done
 for security reasons, for instance when a banking site automatically
 logs you out after a few minutes of inactivity. This kind of automatic
 ending can be annoying, so use with care.
[image: If a user clicks too many Add Friend buttons too quickly, Facebook gives the user a warning. (Courtesy Alfie Flores Nollora and Little Big Details.)]

Figure 5-3. If a user clicks too many Add Friend buttons too quickly,
 Facebook gives the user a warning. (Courtesy Alfie Flores Nollora and
 Little Big Details.)

Loops can be used to recognize behavior as well. For example, if a
 user has paused at one part of the microinteraction for too long, the
 microinteraction could prompt them with help (Figure 5-4).
[image: If a video has been buffering for too long, the TED site offers users the option to download it for later. (Courtesy Justin Dorfman and Little Big Details.)]

Figure 5-4. If a video has been buffering for too long, the TED site offers
 users the option to download it
 for later. (Courtesy Justin Dorfman and Little Big Details.)

Sometimes just the repeating (an open loop) is enough. But the
 most powerful loops are those that take place over long durations and/or
 are closed loops that adapt over time to behavioral feedback. These are
 long loops.

Long Loops

“Something in design has gone wrong when objects don’t mature in
 a way that makes them more desirable.”
—Deyan Sudjic

Let’s talk about hammers for a moment. Hammers, like most
 tools, are very good for a few discrete activities—just like
 microinteractions. In the case of hammers, this is pounding or removing
 nails, as well as occasionally smashing something. But microinteractions
 aren’t hammers. They can have memory. They can use data. They can loop,
 sometimes endlessly. When designing microinteractions, you can use what
 I’m calling long loops and focus not only on doing an individual task,
 but also on a longer timescale. What can be done to make the
 microinteraction better the second time it’s used? The tenth? The ten
 thousandth? Figures 5-5 and 5-6 are examples of microinteractions
 that have undergone looped modifications.
[image: The songs in the “Added” column on Spotify fade over time. (Courtesy Jorge Nohara and Little Big Details.)]

Figure 5-5. The songs in the “Added” column on Spotify fade over time.
 (Courtesy Jorge Nohara and Little Big Details.)

[image: YouTube indicates recently made searches in purple. (Courtesy Davide Dettori and Little Big Details.)]

Figure 5-6. YouTube indicates recently made searches in purple. (Courtesy
 Davide Dettori and Little Big Details.)

Loops can deliver what design strategist and CEO of design
 consultancy Adaptive Path Brandon Schauer calls The Long Wow. The Long Wow is about
 delivering new experiences or features over time instead of all at once,
 and by doing so building customer loyalty (see Figures 5-7 and 5-8). For the purpose of
 microinteractions, The Long Wow is about adapting the microinteraction
 over time so that it feels customized or even brand-new. This requires a
 long loop, perhaps one that lasts the duration of the device the
 microinteraction is contained in or even beyond, if behavioral data can
 be stored remotely or transferred to a new device.
[image: Threadless sends users an email when items in their cart are about to sell out. (Courtesy Little Big Details.)]

Figure 5-7. Threadless sends users an email when items in their cart are
 about to sell out. (Courtesy Little Big Details.)

[image: Remember Me is the great broken loop of the Internet. What even happens when you check the box? Does it automatically log you in? (Unlikely.) Most times, it doesn’t even remember you checked the box, leaving it unchecked. (Courtesy Jack Moffett.)]

Figure 5-8. Remember Me is the great broken loop of the Internet. What even
 happens when you check the box? Does it automatically log you in?
 (Unlikely.) Most times, it doesn’t even remember you checked the box,
 leaving it unchecked. (Courtesy Jack Moffett.)

One use of these long loops is to extend the microinteraction far
 beyond a single instance of use. A weekly reminder of items placed on a
 wish list is one example, or the “Remember Me” checkbox that no website
 seems to remember is another. When a user returns to the
 microinteraction, ideally there is some memory of previous use. A user
 who likes to play her music loud may have different volume settings than
 someone who doesn’t.
[image: ThinkGeek allows users to temporarily unsubscribe while the holidays are ongoing. (Courtesy Kayle Armstrong and Little Big Details.)]

Figure 5-9. ThinkGeek allows users to temporarily unsubscribe while the
 holidays are ongoing. (Courtesy Kayle Armstrong and Little Big
 Details.)

Progressive disclosure or reduction

Another use of long loops is progressive
 disclosure over long periods of time. As users become used
 to a product, they don’t need as much handholding, and instead can be
 treated as a more skilled user. For example, shortcuts could be added
 to a microinteraction after it’s been used a few times, or more
 advanced features added.
Another option is progressive reduction,
 where the microinteraction becomes simpler over time, as the user
 becomes skilled and doesn’t need items such as labels for guidance
 (see Figure 5-10 for
 an example). However, care must be taken; if the user doesn’t engage
 with the product for a while, the microinteraction might have to
 become more robust and obvious again. The benefit to users is a
 cleaner interface, one that rewards and makes use of a user’s
 familiarity with a product.
[image: An example of progressive reduction from LayerVault. The signpost button’s default is a large icon with a label. As the user becomes proficient, the label disappears. And eventually for experienced users, the button is de-emphasized altogether. (Courtesy LayerVault.)]

Figure 5-10. An example of progressive reduction from LayerVault. The
 signpost button’s default is a large icon with a label. As the user
 becomes proficient, the label disappears. And eventually for
 experienced users, the button is de-emphasized altogether. (Courtesy
 LayerVault.)

As the near-disastrous story of the Spirit
 rover on Mars reminds us, loops and modes can be tricky to implement
 and maintain. However, their use can make a microinteraction cleaner
 (by moving infrequent actions like settings to a mode) and richer, by
 having the microinteraction adapt to use over time.
This completes the structure of microinteractions. Now it’s time
 to put everything together that we’ve learned.

Summary

Only have a mode when there is an infrequent action that might
 otherwise clutter the microinteraction.
If you must have a mode, make it its own screen when
 possible.
For rapid actions, consider using a spring-loaded or one-off mode
 instead of a traditional mode.
Use loops to extend the life of a microinteraction.
Carefully consider the parameters of loops to ensure the best user
 experience.
Use long loops to give the microinteraction memory or to
 progressively disclose or reduce aspects of the microinteraction over
 time.

[40] For the full details, see “The trouble with rover is revealed” by
 Ronald Wilson, EE Times, February 20, 2004.

[41] Quasimodes were introduced in the late Jef Raskin’s seminal
 book The Humane Interface (Addison-Wesley
 Professional).

[42] Developers may take issue with this definition, as a traditional
 loop (in computer science terms) would not be employed to make this
 possible. Instead something like a “Wait” or “Sleep” command would
 likely be used.

Chapter 6. Putting It All Together

[image: image with no caption]

On a cold Boston night in February 2008, Leah Busque and her
 husband realized their dog Kobe was out of dog food. They were headed out to
 dinner and a cab was even on its way, but the dog needed to be fed. She
 thought, “Wouldn’t it be nice to go somewhere online and say, ‘We need dog
 food,’ name a price we’d be willing to pay, and find someone in our
 neighborhood, maybe at the store that very moment, who could help us?”
 Before the cab had even arrived, she’d bought the domain name RunMyErrand.com.[43]
RunMyErrand eventually became the startup TaskRabbit, with Busque as
 its founder and CEO. TaskRabbit lets people locally outsource the small
 chores they don’t want to do like donating old clothes or buying dog food.
 By 2011, TaskRabbit had millions in funding, 35 employees, and was
 generating $4 million USD in business every month.
At the heart of TaskRabbit is a microinteraction: telling potential
 “TaskRabbits” what task needs doing so that the TaskRabbits can bid on the
 fee for doing it. Specifying the task that needs to be done is the
 microinteraction. The entire service rests on this one crucial, yet
 potentially unexciting, step. At first, this microinteraction was a very
 text-heavy form, where users would have to write out their tasks in some
 detail (see Figure 6-1). But
 in 2011, after the team had designed their simpler mobile app, they realized
 there was a better way: by making a set of Smart Defaults, Bringing the Data
 Forward, and breaking the task up into chunks. As detailed in “TaskRabbit Task posting forms”, then
 director of UX Sarah Harrison explained: “As time went on, we got more data
 about our Tasks, our software got more sophisticated, and we were able to
 categorize Tasks into main Task types. This allowed us to create specific
 forms for common Task types, simplifying by asking for relevant details,
 setting smart defaults, and hiding irrelevant questions.”
[image: An early version of the TaskRabbit task-posting form. (Courtesy Sarah Harrison.)]

Figure 6-1. An early version of the TaskRabbit task-posting form. (Courtesy
 Sarah Harrison.)

The result is the (admittedly large) microinteraction in Figures 6-2 and 6-3. The user only has to pick a main task
 (Figure 6-2), then the next
 step of the microinteraction (Figure 6-3) is tailored based on
 that main task. Users were
 delighted. “They made the entire task a no-brainer,” said one. “They
 answer all the questions I have before I even ask them.” This is the sign of
 a great microinteraction (Figure 6-4).
[image: Step 1 of the redesigned TaskRabbit task microinteraction. (Courtesy Sarah Harrison.)]

Figure 6-2. Step 1 of the redesigned TaskRabbit task microinteraction.
 (Courtesy Sarah Harrison.)

[image: Step 2 of the form. Once the user picks a main task, the rest of the microinteraction is customized around it. (Courtesy Sarah Harrison.)]

Figure 6-3. Step 2 of the form. Once the user picks a main task, the rest of
 the microinteraction is customized around it. (Courtesy Sarah
 Harrison.)

[image: TaskRabbit brings the data forward here, answering the question, “How much should I offer?” (Courtesy Rishi Shah.)]

Figure 6-4. TaskRabbit brings the data forward here, answering the question,
 “How much should I offer?” (Courtesy Rishi Shah.)

In this chapter, we’re going to put everything we’ve discussed
 together to make three example microinteractions: a mobile app for setting
 an alarm, a web widget for a shared playlist, and the control panel for a
 dishwasher.
Example 1: Mobile App

In this first example, we’re going to look at an iPhone mobile
 app for setting an alarm. The microinteraction here is the entire app; all
 the app does is allow the user to set a time for an alarm to go
 off.
The first thing to think about is what the goal is: it’s to be
 alerted (usually woken up) at a particular time. It’s not to set
 an alarm: that’s just a rule. So let’s write out the rules we
 know we need at this point:
	User selects a time for an alarm to go off.

	The alarm goes off at the specified time.

	The user turns off the alarm.

We’ll fill out the rules more later. Let’s now look at the
 trigger.
Since we’ve said the microinteraction is an iPhone app, the
 trigger is a given: it will be a standard icon that lives on the iPhone
 home screens. Since that’s solved for us, let’s see if we can
 Bring the Data Forward in any way.
What is the one piece of information that users would like to see
 before starting the microinteraction? In this case, it’s whether or not an
 alarm has been set, and what time the alarm is set for. The mechanism
 Apple has for showing information inside an app are badges. Here we run
 into a snag. In another OS, like Windows Phone using live tiles, we might
 be able to indicate in text and time whether there is an alarm and what
 time it’s set for, but as of this writing (March 2013) with iOS 6, only
 numbers are allowed in iOS badges, and only four of them at that. So what
 do we do? If the alarm was set to 6:30 you could possibly do a badge that
 was 630, but what if the alarm was 12:30? Does 1230 convey the message?
 This is an atypical use of badges, which are normally for indicators such
 as unread messages, so that gives us pause. Also, if we do a badge that
 indicates the time, we’re limiting ourselves to only one alarm; you can’t
 show multiple alarm times given these constraints! This isn’t necessarily
 a bad thing: only one alarm makes the rules much simpler. There is a way
 around showing multiple times in a badge, in that you would only show the
 next alarm in the badge. But this too could cause
 confusion, and confusion is the enemy of microinteractions. When in doubt,
 make it simpler. So until this constraint is changed (if ever) or we put
 our app on a different platform, the only data we’ll bring forward is the
 number of alarms set and active. It’s not as useful as knowing the time,
 but there is still some value in knowing at a glance if an alarm is
 set.
Our trigger needs a label, which in this case is the name of our
 app. Let’s call it AlarmD.
What happens when AlarmD is triggered? The app launches, but then
 what does it show? If the goal is to be alerted at a particular time, it
 should either be showing when the alarm(s) are going to go off, or else
 prompting the user to set an alarm.
At this point, we should pause and ask what we know about the user
 so that we Don’t Start from Zero. We know what
 platform the user is on and what device, so we also know what sensors are
 available to us (camera, microphone, accelerometer, compass). We know the
 time (obviously) and the location. If the app has been used before, we
 could know what previous alarms had been set, and how often. Does the user
 set the same alarm(s) every day, or just every weekday? We might also know
 what happened once those alarms went off: did the user press snooze at
 all? If so, for how many times? Let’s add in some rules to account for
 some of this data:
	If the user has set the same alarm for three days in a row and
 the alarm isn’t set, prompt to set the same alarm when AlarmD is
 launched. If the user does set the prompted time, prompt whenever
 launched until the user does not select, then reset.

	If the country the phone is in uses 24-hour format, use
 that.

	Display any set alarms. Show the time until it goes off (e.g.,
 “8 hours away”).

	User selects a time for an alarm to go off.

	The alarm goes off at the specified time.

	If the user presses the snooze button, repeat the alarm in five
 minutes. All subsequent snoozes come one minute earlier until they are
 one minute apart.

	If after a week of use, the user has never pressed snooze,
 remove it from the alert.

	The user turns off the alarm.

Notice there is already a long loop in there
 (“three days in a row”) that engages a system trigger
 as well as some shorter loops (the snooze countdown). The display of “8
 hours away” is a way to Prevent Human Error for
 setting an alarm too far in the future, by selecting P.M. instead of A.M.,
 for example. The removal of the snooze button, while limiting options,
 could be controversial. We might need to be able to restore it via a
 setting somewhere. If our app weren’t on iOS, we could do some other
 tricks with snooze, like make the alarm louder each time the alarm goes
 off after a snooze, but iOS doesn’t allow apps to control the overall
 volume, so we’re stuck with that constraint.
Next, let’s take a look at the controls. The user has to be able to
 set an alarm, cancel an alarm, turn off an alarm, and snooze. These will
 all need visible controls of some sort in the UI, unless any of them could
 be hidden under a multitouch gesture. Almost all of them except for snooze
 are essential, and with snooze, you have users who are half asleep, so you
 cannot expect them to perform anything more complex than tapping a button.
 Setting an alarm time is the most complicated of these; everything else
 can be done via simple button taps. Setting the time could be done in
 various ways: using the built-in tumblers (as Apple’s Clock app does) or
 via a custom control, such as selecting a time on an analog clock.
This is where we should pause and consider whether we want setting
 the alarm time to be a Signature Moment for the microinteraction, or just
 accomplished quickly. Since there are about 1,000 alarm apps on the
 market, setting the alarm might be a good place to do something custom and
 interesting. I’ve always been a fan of those old-fashioned train tickers,
 so this app will make use of them. Since, honestly, who needs to set an
 alarm for particular minutes, the minutes flipper will move in five-minute
 increments. Optimize for what most people do most of the
 time.
What will really make this custom control come to life is the
 feedback while adjusting it. It has to have a very satisfying clack as the
 tiles flip, and the way the tiles visually flip has to look like they obey
 gravity. Another important piece of feedback is the alarm itself. You
 could let users use the standard iPhone sounds or pick songs from their
 iTunes library, but a default, custom sound would be memorable here. Other
 places for custom sounds would be when canceling an alarm or when turning
 it off: something like a very definitive mechanical click, such as those
 when turning off a gas stove. Perhaps the alarm itself fades away instead
 of an abrupt cutting off as well.
The last thing to consider are loops and modes. An obvious mode
 here would be the setting of the alarm time, although since it’s a single
 action, it could probably be accomplished in an One-off mode: tap it from
 a list of alarms, it opens up, the user sets the alarm, and it closes. A
 more traditional mode would be Settings, if we wanted to
 give users an option to set actions like the duration of snooze. I would
 advocate for not having settings. Make the defaults good enough to ship—at
 least in the first release.
As far as loops go, there are several. The alarm is several
 kinds of loops at once: the snooze is a count-controlled loop (make the
 alarm go off in five minutes, then four, then three, etc.) that turns into
 a condition-controlled loop (have the alarm go off once a minute). In
 fact, the whole alarm is one long condition-controlled loop, as the alarm
 goes off once the alarm time (the condition) is met, and continues to go
 off until manually stopped. Of course, we could—and probably should—put in
 a timer in the rules, so that if no one turns the alarm off for, say, 10
 minutes, the alarm turns itself off.
Once again, the platform constrains us from using loops to their
 full potential. One nice addition would be for the app, two minutes before
 the alarm goes off, to check the light in the room via the phone camera.
 Then, if the room is dark, over the next two minutes gradually increase
 the light coming from the phone so that when the alarm does go off, the
 room is brighter. But on iOS, an app can’t open itself. (There’s certainly
 good reason behind this system rule, as it could be easily abused.) Only
 an alert can appear, which isn’t even close to the same thing.
There are some long loops built in: the prompt for an alarm the user
 does repeatedly, and the hiding of the snooze button. One thing we
 (deliberately) didn’t include is a way for the user to create a repeating
 alarm—that is, create their own loop. This adds a lot of complexity to the
 app, some of which we’ve moved to the microinteraction itself in the form
 of the initial long loop that checks to see if the user has set the same
 alarm repeatedly. We could add more nuance to the loop, to check to see if
 it is a weekday or a weekend and prompt accordingly, but to keep the rule
 simple, let’s end there.
So there we have our first example of a microinteraction designed
 using the principles outlined in this book. Let’s try another.

Example 2: Online Shared Playlist

The second example we’re going to use is for an online music
 service (albeit fake). Let’s say that as part of this music service’s
 offerings, there is a shared playlist, where users and their friends can
 drop songs for each other. Let’s also assume the service is sophisticated
 enough that you can use songs from other services or even a desktop app
 like iTunes. And finally, let’s say our playlist lives among other
 microinteractions like adding friends and playing music.
We can start with the goal. The reason people would want to use this
 microinteraction is twofold: to discover new music and to share music. Of
 course, the secret motivations to use this microinteraction might be to
 tell friends your emotional state or to demonstrate how good your musical
 taste is. Underlying motivations are important, too.
Let’s sketch out the basic rules first:
	If a new song arrives, add it to the playlist.

	The user can add a song to the playlist.

	New songs are added to the top of the playlist.

Our microinteraction has two triggers: adding a song (a
 manual trigger), and a friend adding a song remotely
 (a system trigger). Let’s talk about manual first. If
 we assume there is a visual display of the songs in the playlist, how do
 users know they can add a song to it? Since you can add songs from
 anywhere and the system is smart enough to find a version of the song
 everyone can listen to, being able to drag a song to the playlist seems
 like one way to do that. Making that discoverable might mean putting an
 empty slot at the top of the playlist, saying Drop a Song Here. We can
 change the label after the user has successfully put a song in the
 playlist, to something like “What are you listening to?” Perhaps we could
 even rotate the label options occasionally, prompting the user with labels
 such as “What’s today’s tune?” or “What does today sound like?”
Are there other manual triggers? If our music service has a menu
 bar, you could put a menu item there: Add to Shared Playlist, although
 that would only work with selected songs from within the service itself,
 except if there was nothing selected, we opened a dialog box for users to
 search for a (music) file. It seems clunky—and too much like a chore—for
 what’s supposed to be a fun microinteraction. So let’s keep Add to
 Playlist as a menu item, but only for selected items from within the
 service. For anything outside the service, it has to be dragged to the
 playlist. Let’s also add a key command so frequent users can just select a
 song and use the command to add without fumbling around with menus or
 drag-and-drop.
We could also allow users to add songs by typing in a song title
 (and perhaps an artist name). But the more different kinds of triggers we
 have, the more complicated the microinteraction becomes. And besides,
 typing a song isn’t really a very standard way to add a song to a
 playlist.
Adding a song to the playlist, or especially when a song appears
 from a friend, is a great place for some feedback, particularly some
 animation. The whole playlist should slide down one slot, and the new song
 drops in from the top, sliding in with a musical
 plink. Since it’s an app about music, audible
 feedback makes some sense.
There is also the system trigger of your friends adding songs to the
 playlist. If you have the browser tab open to the service, you’ll
 certainly see (and hear) the song arrive. But if you don’t, it could be
 fun to change the browser tab slightly, just as an indicator something has
 happened. Let’s make our “badge” a musical note with a smile inside it.
 We’ll call it Notesy.
When the user does drag a song into the playlist, it might take a
 while for the system to match the song. We could just use a regular
 spinning icon, but why? Feedback is a place to add some personality. We’ll
 Use the Overlooked and use the loader to make use of
 Notesy again. We can have Notesy “looking around” for a match, then
 smiling as some are found.
The system might have to offer multiple choices if there are
 variations or it’s unsure. If there is only one match, and/or it matches
 both Artist and Song Name exactly, it should add the song directly to the
 playlist. Otherwise, it should offer possible matches. Presenting possible
 matches is where an algorithm comes into play. Since
 we don’t want to overwhelm the user, we’ll present no more than three
 possible matches for the song. Since it is more likely that the artist
 name will be correct than the song title, we can use that as an ordering
 factor in our algorithm: matches from that artist are first. If none of
 the three are correct, we can provide a mechanism to go get three more
 selections. If it can’t find any matches, Notesy can appear and look
 sad.
At this point, we could ask whether or not users can delete songs
 from the shared playlist. Let’s assume no, since in the worst case, users
 can always use the controls to skip over any tracks they don’t like. Let’s
 also assume that users can’t rearrange songs in the playlist. We might
 find in testing or after launch that these are deal-breakers for adopting
 and using the service, but for now, it keeps our rules simpler.
Let’s see what the rules look like now:
	If a new song arrives, add it to the playlist. Show Notesy in
 the browser tab.

	The user can add a song to the playlist by dragging it to the
 top of the playlist or by selecting a song and using the Add to
 Playlist menu item or by using a key command.

	When new songs are added, search for a match. If matches are
 found, show them in groups of three and let the user select the
 correct one. If (or when) there is no match, show sad Notesy.

	New songs are added to the end (top) of the playlist ordered by
 the time they are added.

Is there any way to get more depth from our microinteraction? What
 data is worth bringing forward? Well, it’s certainly nice to know whose
 song is in the playlist and when it was added. Playlist duration and the
 number of songs in it are also useful tidbits. Being able to send a brief
 comment to the song adder about that particular song (“Not another ’80s
 song!”) would also be a nice microinteraction to attach here as
 well.
Adding a long loop to encourage users to contribute songs would be
 a way to encourage engagement. You could show the last day/time the user
 contributed, just as a mild reminder, or do some actual nagging via the
 dropbox label: “Feed me!”
How does the microinteraction end? It really doesn’t as long as the
 user is logged in to the service, although we should probably put a cap on
 the number of songs in the playlist before a song drops off. Thirty songs
 seems reasonable.
And so ends this microinteraction. The next example moves us into
 the world of microinteraction devices.

Example 3: Dishwasher Control Panel

For our last example, we’re going to design a low-cost
 dishwasher control panel—but with the added challenge of the dishwasher
 being screenless. Let’s assume this very basic dishwasher has a speaker
 for sound and several settings for different washing cycles. Let’s also
 assume we know what cycles most users need and want, and that this is a
 small number of cycle options—let’s say four.
The goal for dishwashing is to clean dishes, glasses, and
 silverware. The basic rules are these:
	The user loads the dishes and detergent into the dishwasher,
 then shuts the dishwasher door.

	The user selects the washing cycle and turns on the
 dishwasher.

	The dishwasher washes the dishes.

The trigger is so important here that we’ll revisit it in a
 moment. First, let’s figure out what we know so we Don’t Start
 from Zero. We should be able to know time (duration), the last
 setting the user selected, and historic data on what the user has selected
 and when. Since this is a low-cost dishwasher, other sensors (except
 perhaps those inside the device) are probably unlikely. It’s a very dumb
 appliance. We might not be starting from zero, but we’re barely at
 one.
The pieces of data that we can bring forward are whether or not the
 dishwasher is running, where it is in the cycle, and how long until it’s
 done. Most people probably don’t care where the dishwasher is in the
 cycle, except to know when the dishes will be done. Since we have no
 screen, we’ll have to come up with other feedback to indicate this.
 Perhaps we’ll be able to Use the Overlooked.
So let’s figure out the controls. We know we have (at least) two
 possible controls: turning the dishwasher on and setting the washing
 cycle. Turning the dishwasher on could easily be a button. And each
 washing cycle could also be a button. This would certainly be
 operationally simple: one button for everything, with perhaps an LED on or
 around the button to indicate what cycle has been selected and another on
 or around the on button to indicate the dishwasher is in operation. This
 set of controls doesn’t really help us Bring the Data
 Forward though. We’d have to add in another kind of display to
 indicate when the dishes will be done—perhaps a thin strip of LEDs that
 are lit at the beginning and extinguish as the cycles complete.
Another way to do the controls would be as a dial, similar to what
 washing machines have. Users turn the dial to the setting they want, then
 pull the dial out or push in to start. The dial would move as it goes
 through cycles until it stops. As an added bonus we could use the seam
 between the dial and the case or even inside the dial as an LED timer. A
 dial would certainly be more visually simple than a row of buttons.
However, dials are often ugly, and although our dishwasher is
 low-cost, we don’t want it to be ugly. Dials also protrude, and on a
 dishwasher, you might want a flatter surface so people don’t bump into a
 dial. And, unlike a washing machine where users may care about where
 the machine is in the cycle, the data users really value with a dishwasher
 is when the dishwasher will be done, not the cycles. Don’t show
 feedback for what the user doesn’t care about. So let’s do a
 row of buttons—perhaps nice capacitive buttons—one for each cycle, lined
 up from longest duration (Pots and Pans) on the left to the shortest
 (Quick Rinse) on the right, followed by (although separated from the
 cycles) a Start button. On the buttons: a label with the cycle name (or
 Start). Underneath the cycle buttons let’s put our thin strip of
 LEDs.
Let’s now look at our microinteraction as a sentence—both to make
 sure it makes sense and to figure out where the nouns
 and verbs are. The User selects a Cycle Button that
 turns on the LED Strip, and then presses the Start button that starts the
 countdown on the LED Strip. Examining our microinteraction nouns, each
 button has two possible states: selected or not. Objects that look the
 same should act the same, so let’s make a soft glow around each when
 selected, although perhaps a different color for the cycles than for the
 start. Each cycle could have its own color, but that’s probably overkill.
 Using the principle of Emphasize the Next Action, the
 Start button should also draw attention to itself once a cycle button has
 been pushed because that is the next action a user has to take in the
 process.
Since the LED is counting down the time until the dishwasher stops
 (it’s a Count-Controlled loop), its color should
 probably match that of the Start button. Our LED progress bar could be
 broken up into segments, each roughly 15 minutes—we probably don’t know
 exact time, because a cycle like Auto Wash makes use of internal sensors
 to determine how long to wash the dishes. If the water is still dirty, it
 will run another cycle.
A rule and crucial piece of feedback we’re missing is what happens
 when the dishwasher is done. After all, the goal is to have clean dishes,
 and the user wants to know when that goal is accomplished. We have a
 speaker, so one means of feedback could be a Signature Sound (a “Ta da!”)
 on finishing. But you can’t count on the user being within hearing range,
 and you definitely do not want to repeat the sound until the dishwasher is
 opened or reset. (Hey, what about Reset? We’ll get to that in a moment.)
 So let’s make the Start button and LED Strip red until the dishwashing
 cycle ends, then the LED strip turns off and the Start button glows green
 (or perhaps blue, so it’s easier read by the color blind) to indicate the
 dishes are now clean. So the Start button now has four states: Off, Push
 Me, Working, and Clean. Once the dishwasher is opened, it should reset
 itself to Off.
Oh, and let’s talk about Reset. There may be times our simple
 sentence doesn’t work as smoothly as we like. Users might open the
 dishwasher in the middle of the cycle—and leave it open. We could be
 Poka-Yoke and simply lock the dishwasher when it was
 running, but that seems overly restrictive. Thus, we need some rules
 around opening the dishwasher and a means to reset the dishwasher as well.
 We could have a separate button for reset, although since it would work
 differently than the other buttons (because it’s not a toggle—you can’t
 select it; there is no selected state) we’d have to have a different kind
 of button, since we don’t want an object that looks the same but acts
 differently. Another way is to simply use a Spring-Loaded
 mode on the Start button. Pressing and holding the Start button
 triggers a reset. I like that solution better, if for no other reason than
 it removes a button that would be used infrequently. We’re using fewer
 nouns to do more verbs. But the reset action isn’t particularly
 discoverable, so we probably need a label underneath: Hold to Reset.
 We might have to add a loop to do an automatic reset if the
 door is left open for too long.
The only remaining question is if we can use Don’t Start
 from Zero. We can collect data about the last cycle used and
 when, but it’s unclear if any of this information would actually be
 helpful. Yes, we could have the dishwasher display the last cycle the user
 requested, and with four options, this might save the user pressing the
 cycle button 25% of the time (if all the cycles are used equally, which is
 unlikely). We could put a long loop in there to see if we can’t save a
 button press occasionally, but it might make the microinteraction feel
 inconsistent: sometimes a cycle would light up automatically, sometimes
 not. Either we have to have it on the last cycle selected, or nothing at
 all.
Here are our final rules, once everything is put together:
	The user loads the dishes and detergent into the dishwasher,
 then shuts the dishwasher door.

	Unless Reset has been used, the last cycle used and accompanied
 estimated duration on the Progress Bar should be lit up and the Start
 button should pulse (Push Me state) until pressed.

	The user can change the washing cycle, which changes the
 duration on the Progress Bar.

	The user presses the Start button. The Start button glows red
 (Working).

	The dishwasher starts washing the dishes. The LED progress bar
 counts down.

	If the dishwasher is opened, pause the cycle. When re-closed,
 resume. If the door remains open for more than an hour, reset.

	When the dishwasher is done, the cycle button and progress
 indicator turn off. The Start button glows green.

	When the dishwasher door is opened, the Start button switches to
 off.

	At any time, if the user presses and holds the Start button for
 three seconds, the microinteraction resets and dishwashing stops. All
 buttons go to the off state and the Progress Bar is cleared.

We never did make use of the speaker we have available for
 additional feedback. (If this was a higher-end appliance, we could
 possibly also make use of haptics, too.) We certainly have several moments to reinforce
 actions with sound. Especially if we’re using capacitive buttons, we could
 use sound to create button-press clicks. Pressing Start could certainly be
 a time to use an earcon for a Signature Sound. Although it seems obvious
 to create an earcon for when dishwashing has ended, broadcasting it in the
 middle of the night into an empty room could be anxiety-producing. If we
 were designing a more expensive dishwasher that could algorithmically
 check the time (via the network), the brightness of the room (via light
 sensor), and maybe even activity in the room (via motion sensor) it could
 only broadcast its earcon when it suspects people are awake and nearby.
 But alas, not on this model.
And so ends our example microinteractions. Hopefully, this provides
 a sense of how the structure and principles outlined in this book can be
 brought together to create well-crafted microinteractions.

Prototyping and Documenting Microinteractions

The reason to document and prototype any product is to communicate
 an idea: this is how it could (or should) work. With microinteractions,
 the most difficult idea to convey is the overall flow: how all the pieces
 fit together. It’s this overall flow that communicates how the
 microinteraction should feel.
There are a number of ways to accomplish this goal:
	Prototype on the platform.
	If you have technical skills or access to them, prototyping on
 the platform where the microinteraction will live is probably the
 best way to really understand how the microinteraction will work.
 However, it is also likely the most time-consuming way as
 well.

	Make a movie.
	Movies are fast ways to convey timing and flow. They can be
 actual movies with video (see Figure 6-5)
 and a post-production tool such as AfterEffects, or they can be
 animations, such as those created with HTML5.

	Create frame-by-frame storyboards.
	You can also show the microinteraction as a set of linked
 storyboards (see Figure 6-6).
 While this doesn’t show timing exactly, it at least demonstrates a
 sense of movement and shows the different states in
 context.

[image: A still from a prototype movie. The physical pause button on the left “shoots” a pause indicator out onto the screen. (Courtesy BERG London)]

Figure 6-5. A still from a prototype movie. The physical pause button on the
 left “shoots” a pause indicator out onto the screen. (Courtesy BERG
 London)

[image: An example of a frame-by-frame storyboard]

Figure 6-6. An example of a frame-by-frame storyboard

Probably the worst way to document a microinteraction is as static
 screenshots. Screenshots convey little of the microinteraction’s flow,
 while often removing states from any context that would make them
 understandable. The best documentation tells a story about what is
 happening and why.
Tip
To learn more about story-centered design documentation, see
 “Why good storytelling helps you
 design great products”, by Braden Kowitz.

If you have to use static screenshots or wireframes, include
 keyframes into the documentation. Keyframes are a concept that originated
 with animation, in which the senior animator would draw the essential
 frames of an animation (the “keyframes”), leaving the parts in between for
 junior animators to fill in. For microinteractions, keyframes might
 include the trigger, an essential moment in the rules, and how the
 microinteraction ends.
It often makes sense to use multiple methods to convey a
 microinteraction: a prototype or movie to show timing, frame-by-frame
 storyboards for detail and context, and wireframes with keyframes to call
 out any complicated rules.

Orchestrating Microinteractions

Unless it’s a distinct app or device, microinteractions seldom
 exist alone. More typically, they are found around, inside, or at the
 center of a larger feature, such as with TaskRabbit’s “Post a Task” microinteraction at
 the beginning of this chapter.
When designing interactions that are not stand-alone, the first
 action to take is to figure out what the relationship is between the
 microinteraction and the feature. Does it launch it (logging in), control
 it (the pause button on a video player), appear inside it (a formatting
 tool), or end it (the off switch)? Each of these will likely have a very
 different trigger, and the next thing to determine is how persistent the
 microinteraction is. That pause button might be there the whole time the
 app is open, but the formatting tool only appears when the user does
 something very specific.
What is essential to then determine is if the microinteraction
 should be a Signature Moment or not; that is, should it be something
 memorable. In most cases, the answer is no, it should not. It should be
 pleasing, of course, (which is the point of this book), but rapidity and
 effortlessness should be the goal, particularly when the microinteraction
 stands in the way of the overall goal of the product (such as a login
 microinteraction before the user can actually use the rest of the
 app).
Turning Microinteractions into Features

Microinteractions can also trigger other
 microinteractions, so that there is a kind of “daisy chain”
 effect, where one microinteraction can be the trigger for another, which
 is itself a trigger for another. For example, turning on a device or
 launching an app (a microinteraction) could be the system trigger to
 check to see when the user last used the app. If it’s been a while, it
 could launch another microinteraction (“Welcome back, here’s what’s new
 since you last used [App]”).
This is how you can build features from microinteractions: by
 orchestrating them so that where one microinteraction leaves off,
 another picks up. The details are the design.
The trick when working this way, just as with instruments in an
 orchestra, is to figure out which
 microinteractions inside the feature get prominence. Not all microinteractions are created equal. Some
 are important; some should be subtle. Feedback needs to be coordinated
 to give the right emphasis and to keep the tone consistent.
When designing this way, it can be helpful to have a master list
 of all the microinteractions that need to be designed to make the
 feature work properly. This can often be generated from a task list or
 flow or from functional requirements. From there, you can make a
 microinteraction map (see Figure 6-7) that shows how the
 microinteractions all fit together.
[image: A simple example of a microinteractions map for a newsreader.]

Figure 6-7. A simple example of a microinteractions map for a
 newsreader.

Pay attention to the handoffs: what microinteraction triggers what
 microinteraction, and where one microinteraction leaves off and another
 begins. This might not—in fact, in many cases probably should not—be
 obvious to the user. You don’t want your feature or your overall product
 to feel like a disjointed collection of tiny moments, but rather like an
 integrated whole.
It is easy to forget the whole when working this way. After
 crafting each microinteraction, step back and make sure the piece you
 just made fits with the other microinteractions. Particularly in
 sketches or wireframes, it’s easy to make a microinteraction that
 unintentionally conflicts with another microinteraction. For example,
 working on how a list displays may conflict with how scrolling works. A
 method to guard against this happening is to note before starting to
 design a microinteraction which other microinteractions touch it.
Although most of the time we should be concerned that our
 microinteractions are too much, too intrusive, sometimes they’re too
 dull and need more pizazz.

How to Fix a Dull Microinteraction

We don’t always get to start from a clean slate; sometimes
 there are existing microinteractions in the product we’re working on
 that are just ... there. Or sometimes we’ve focused on major features
 and are just now getting around to making our microinteractions shine.
 But where to begin?
Ask yourself a series of questions based on the principles
 outlined in this book:
	Should this be a Signature Moment? In
 other words, how memorable should it be? The more memorable, the
 richer it can be in terms of controls (including custom controls)
 and feedback.

	Am I starting from zero? What do I know
 about the user or the context that would improve this
 microinteraction?

	What is the most important piece of data inside this
 microinteraction, and can I bring it forward? What does
 the user need to know at a glance?

	Would a custom control be appropriate? A
 custom piece of UI practically guarantees the microinteraction will
 become more prominent.

	Am I preventing human errors? If there
 are any situations where a user can cause an error, what can you do
 to prevent that automatically?

	Am I using what is overlooked? Are there
 pieces of UI chrome or hardware that could be doing more?

	Can I make an invisible trigger for advanced
 users? Is there a place to make a hidden shortcut (via a
 gesture or a command key) to get deeper into the rules
 faster?

	Are the text and icons human? Does the
 microcopy sound like something another human would say out loud? Can
 you add a touch of humor?

	Can you add animation to make it less
 static? Could you have transitions between screens or
 states, or an (nonintrusive) indicator of what the next step would
 be?

	Can you add additional channels of
 feedback? Sound or haptics?

	Ask what happens when the user returns to the
 microinteraction the second time. And the
 hundredth time. Figure out what the long loop could
 be.

By answering these questions and applying them to an existing
 microinteraction, you can’t help but make it more engaging. And that’s
 the whole purpose of this book.

Think Small

We’ve discussed many different microinteractions: the alarm that
 ruined Mahler’s Ninth Symphony, the touchscreen trigger that allows
 millions to start buying MetroCards for the New York subway, Apple’s
 bungled changes to the rules of Save As, the addictive feedback of slot
 machines, the loop and mode that almost destroyed a robot on Mars, and how
 being out of dog food led to a multimillion-dollar business. The small
 things matter. They always have, and they always will: now perhaps more
 than ever.
The problems of the 21st century come in
 all shapes and sizes. Some are massive, systemic problems with no easy
 solution. Some are small, discrete problems, the solutions to which can
 offer a brief respite of peace, of humor, or of success. We need people
 who can work on both kind of problems, big and small, and especially
 people who can work on both at the same time, making sure the large
 systems we design—our cities, our governments, our companies, our
 products—are built for humans. And it’s the tiny moments, the
 microinteractions, that can make these large systems humane. In an era of
 algorithms and self-driving cars, we need all the humaneness we can
 get.
Details demonstrate that some care, some thought, some attention has
 been paid. And this is ultimately what we all want to feel: that some
 attention has been paid to us and our needs. This is the gift we can give
 through microinteractions.
Think small, and change the world.

[43] As told to Alyson Shontell in “Founder Q&A: Make A Boatload Of
 Money Doing Your Neighbor’s Chores On TaskRabbit,” Business
 Insider, October 27, 2011.

Appendix A. Testing Microinteractions

There are many who would advise you not to bother testing
 microinteractions, saying they are the equivalent of asking “What color
 should the bike shed be?” That is: unimportant.[44] Let’s assume if you’ve made it this far into the book, you
 feel microinteractions have value and can be improved by being validated,
 tested, and refined via user input.
Microinteractions can benefit from using a Lean UX–style methodology
 of Build > Measure > Learn: build the microinteraction to test it;
 measure the design with a variety of quantitative and qualitative methods;
 learn from an analysis of those findings. Then iterate.[45]
Unlike a true Lean UX process, where you’re testing a “Minimum
 Viable Product” to see if the concepts (“hypotheses”) are valuable, with
 microinteractions we can mostly assume the overall concept is valuable—or at
 least necessary to the proper functioning of the app or device. You are more
 testing the flow and structure than testing
 the concept. Also dissimilar to Lean UX is the fidelity of the
 prototype. Rather than prototyping the least you can test (often a paper
 prototype), with microinteractions, because the structure of
 microinteractions is important, you need as high a fidelity prototype as you
 can develop in order to test them effectively. The links between trigger to
 rules to feedback to loop are tight and not easily separated.
Most microinteractions probably aren’t tested alone for desktop
 software. The effort and expense of setting up and running a testing session
 (not to mention the effort of building a prototype for testing) are
 typically too great to test a microinteraction alone for desktop, so they
 are often lumped together with other items to test. This is not necessarily
 true for web applications, where prototyping is faster, A/B testing easier
 to try, and analytics more readily available. Mobile applications, too, are
 getting easier to prototype. If the microinteraction is the whole mobile
 app, testing is essential; the same is true with devices, although the
 prototyping for them can be more time-consuming as well.
If statistical relevance is your thing, the bad news is that because
 microinteractions are small (and thus most changes to them are likewise
 small), they require more test participants to be relevant. This can mean
 hundreds (if not thousands) of participants, and it definitely means more
 than the usual 5–8 participants that many testing sessions have. At the
 barest minimum, you’ll need to aim for at least 20 participants for slightly
 better data. For the best quantitative data, you need hundreds, thousands,
 even tens of thousands of users, as is typical for testing on many online
 sites. If 5% of users open a drop-down, but only 4.75% successfully make a
 selection, that’s very difficult to detect even with thousands of users—and
 yet it can make a huge difference in sales and adoption.
Unless a microinteraction is terrible or wonderful, determining the
 statistical effectiveness of its nuances is nigh impossible through
 qualitative testing. Quantitative is the only real option. For example,
 adding Google Analytics “Events” to a web microinteraction can give a
 designer insights into the precise weak points of the microinteraction in a
 way that could only be done qualitatively by tracking many users over many
 weeks. That being said, if statistical relevance isn’t important to you,
 even testing with few participants can be illuminating—as always.
As with all product testing, you want to watch out for so-called
 “scenario errors” that are caused by the test itself. Since testing is an
 artificial, constructed situation, the setup and guided path the tester
 takes the user down can cause users to make errors or reveal problems that
 normal use would not. As just one example, pausing to ask or answer a
 question can cause crucial feedback to be missed.
What to Look for During Testing

The four most important things to validate with testing are
 these:
	That you truly understand the goal of the
 microinteraction, and not just a step in the process. The
 point of setting a status message isn’t to type, it’s to communicate.
 Knowing this allows you to fix any emphasis problems, either in the
 microinteraction itself or in the overall product—how important is
 this microinteraction to the overall user experience?

	That you understand what data is important.
 This lets you know what data to bring forward and what
 behavioral-contextual information is valuable to the microinteraction
 and could be used over time.

	That any microcopy is necessary, and if so, that it’s
 clear and understood. This means both instructional copy
 and, especially, labels.

	Timing and flow. Does the microinteraction
 take too long to perform? Are the loops too long? Too short? Note that
 long loops that happen over extended periods of time are difficult to
 test, unless you are doing a longitudinal study, which most developers
 do not.

The first two are often gleaned from conversation and interviews,
 the third by observation. But there are many more things to be learned by
 observation as well, such as:
	Are there too many clicks/taps/control
 presses? In other words, is what the user’s trying to do
 requiring too much effort? This is not necessarily saying count
 clicks, although that is one measure of effort.

	Any confusion as to why. If a user ever
 says (aloud or via frowning/puzzled looks) “Why am I doing this?” then
 something is wrong. Usually a label is misnamed, or instructional copy
 is missing or too vague.

	What just happened? This is an indicator of
 unclear feedback, possibly paired with an unclear label.

	Did anything just happen? There is either
 missing feedback or else the feedback is too subtle.

	I can’t find what I’m looking for. There is
 a gap between what the user expects to find and what is there. This is
 probably a labeling problem, but it could also be that a crucial piece
 of the microinteraction is missing.

	I don’t know where I am. This can be a
 problem with transitions or modes.

	You just did what to my data/content/input?
 This is another case where expectations didn’t match the outcome.
 Either adjust the label or copy, or else this is a deeper, overall
 problem with the microinteraction in that it might not match what
 users are trying to accomplish, or else users are uncomfortable with
 what it does accomplish.

	If I click/push/tap this, what happens?
 This is a case of an unclear label or poor instructional copy.

	I didn’t see that button. This is a problem
 with visual hierarchy. The path through the microinteraction isn’t
 visually clear.

	I didn’t know I could do that. An action is
 too hidden. This often happens with any multitouch gestures or an
 invisible trigger such as a key command.

	What do I do now? This is the same problem
 as above: the path isn’t clear, especially the next step.

	What am I seeing there? This is the result
 of unclear feedback, usually on a process. Add or clarify with a
 label, perhaps on a tooltip. This could also mean the data you’re
 showing isn’t important.

These are all examples of qualitative data, but quantitative can be
 useful as well.

Using Quantitative Data

There is an adage (coined by Lord Kelvin) that what can’t be
 measured, can’t be improved, and there is some truth to it. Having a
 baseline—a starting point—and/or something to compare changes to is
 immeasurably helpful. These are some data points you can test:
	Completion rate
	What percent of users were able to complete the
 microinteraction?

	Overall duration of the microinteraction
	How long did it take to complete the microinteraction? (It’s
 often the case that the slowest users can take five to ten times
 longer to complete tasks than the fastest, so use a geometric mean
 instead of the median to lessen the effect of this type of extreme
 value.[46]

	Duration of specific steps
	

	Number of steps
	

	Number of clicks/taps/selects
	This is not always instructive but can let you know if
 something is inefficient.

	Number of system errors
	Are there places where the microinteraction fails through no
 fault of the user? (These are often found when testing on live
 microinteractions with actual data/connectivity.)

	Number of human errors
	These fall into two categories: slips and mistakes. Slips are
 when the user understands the goal of the action but does something
 improperly, such as making a typo when entering an email address. A
 mistake is when a user does not understand the rules and tries
 something the rules won’t allow, such as clicking a header that
 isn’t interactive.[47]

You can also attempt to quantify qualitative data such as by having
 users rate characteristics like:
	Satisfaction

	Difficulty

	Confidence

	Usefulness

on a rated scale (e.g., 1–7, 1 being low, 7 high). However,
 especially with a small sample size, this can be far from
 definitive.
This assumes, however, that you will be revising the
 microinteraction and testing it again to see if there have been
 improvements, or that you have an alternate version of the same
 microinteraction to compare with (A/B testing). Again: beware of sample
 size. A small number of users could make something like an error or a
 preference seem more (or less) significant than it is.
And even if there is statistical significance, it doesn’t mean there
 is practical significance. The most important lesson about using data to
 help design is this: it can’t design for you. Data requires a human being
 to interpret it, and then place it into context. Data will seldom tell you
 why something is happening.
The data needs to be made meaningful, which sometimes means ignoring
 it. Why would you ever ignore data? Here’s the simplest example: most
 online advertising isn’t clicked. If you get a 0.5% clickthrough rate,
 you’re often doing very well.[48] So should we remove all online ads, since they are so seldom
 used? 99.9% of users think so (the other 0.1% of people work for
 advertising agencies). But getting rid of advertising would essentially
 mean getting rid of the site itself, as there would be no money to operate
 it. Would you like Google to go away? You can’t listen to the data
 entirely because the data doesn’t understand the overall context: the
 business and organizational environment and the user base that are more
 than just numbers on a spreadsheet. Data should be an input to your
 decision making, not the decider alone.

A Process for Testing Microinteractions

The following is one possible process for testing
 microinteractions that could be followed. It is certainly not the only
 process, but it could be a starting point:
	Before showing participants any prototypes, ask them how they
 expect the microinteraction to work. Ask if they’ve ever used anything
 similar in the past. Ask what the one thing is that they want to
 accomplish by using this microinteraction. Check if there is anything
 they would want to know before using the microinteraction—if there is
 one piece of information that would make using the microinteraction
 unnecessary.

	Have them use the microinteraction unaided. Any quantitative
 data should be collected at this point, and/or immediately
 after.

	Go through the microinteraction with the user step by step,
 having the participant talk out loud about any impressions and
 decisions. See if participants can explain how the microinteraction
 works (the rules). Note any discrepancies.

	Ask if they came back tomorrow, what would they want the
 microinteraction to remember about them.

	End by asking what one thing should be fixed.

With this process, you should be able to uncover and diagnose any
 issues with the microinteraction, as well as validate any of the overall
 goals and needs. I recommend doing this process at least twice, with two
 sets of participants, revising the microinteraction based on user feedback
 and findings analysis between sets.

[44] “What color should the bike shed be?” is from developer lore. See
 this link for the whole
 story.

[45] See the book Lean
 UX by Jeff Gothelf (O’Reilly).

[46] See “8 Core Concepts for Quantifying The User Experience,”
 by Jeff Sauro, Measuring
 Usability, December 11, 2012.

[47] For more on slips and mistakes, see Norman, Donald,
 “Design Rules Based on Analyses of Human Error,”
 Communications of the ACM, 26, 1983, and
 Human Error by James Reason, 1990.

[48] See, for example, “So Many Ads, So Few Clicks,”
 BusinessWeek, November 11, 2007.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A
	activated state, of screen object, Screens and States
	
	active state, of manual trigger, Control states
	
	Adler, Robert (inventor)
		TV remote control, The Secret History of Microinteractions
	

	affordance (see visual affordance)
	
	alarm app example, Example 1: Mobile App–Example 1: Mobile App
	
	algorithms for rules, Algorithms–Algorithms
	
	animation, for feedback, Animation–Animation
	
	Antenna Design, MetroCard Vending Machine, Triggers
	
	audio feedback, Audio–Speech
	
	auditory stimulus, recognition of, Making manual triggers discoverable
	

B
	Boolean Logic, Algorithms
	
	buttons, Controls
	

C
	checkboxes, Controls
	
	closed loops, Styles of Loops
	
	code examples, permission to use, Using Code Examples
	
	collection-controlled loops, Styles of Loops
	
	command keys, as invisible triggers, Invisible triggers
	
	complexity, Tesler’s Law regarding, Absorb Complexity
	
	condition-controlled loops, Styles of Loops
	
	contact information for this bok, How to Contact Us
	
	controls, Controls–Invisible triggers, Controls and User Input–Controls and User Input
		(see also screen objects)
	

	conventions used in this book, Conventions Used in This Book
	
	Convertbot app example, Microinteractions Can Be Big
	
	count-controlled loops, Styles of Loops
	

D
	data collection
		context provided by, Don’t Start from Zero, Don’t Start from Zero
	
	contraints regarding, Constraints
	
	privacy issues regarding, Don’t Start from Zero, Feedback as a Personality-Delivery Mechanism
	

	default state
		of manual trigger, Control states
	
	of screen object, Screens and States
	

	default values for user options, Limited Options and Smart Defaults–Limited Options and Smart Defaults
	
	delivery method, for feedback, Feedback Is for Humans–Feedback Is for Humans
		audio, Audio–Speech
	
	haptics, Haptics–Haptics
	
	visual, Visual–Messages
	

	diagramming rules, Generating Rules–Verbs and Nouns
	
	dials, Controls
	
	disclosure, progressive, Progressive disclosure or reduction
	
	discoverability of manual triggers, Making manual triggers discoverable–Making manual triggers discoverable
	
	dishwasher control panel example, Example 3: Dishwasher Control Panel–Example 3: Dishwasher Control Panel
	

E
	earcons, as feedback, Earcons
	
	edge cases, Limited Options and Smart Defaults
	
	errors
		feedback regarding, Feedback Illuminates the Rules, Feedback as a Personality-Delivery Mechanism, Messages
	
	initiating system triggers, System Triggers
	
	preventing, Preventing Errors
	
	quantitative data regarding, Using Quantitative Data
	

F
	features
		compared to microinteractions, Microinteractions Are Not Features ... But Still Matter–Microinteractions Are Not Features ... But Still Matter
	
	microinteractions becoming, Turning Microinteractions into Features–Turning Microinteractions into Features
	
	relationship to microinteractions, Orchestrating Microinteractions
	

	feedback, The Structure of Microinteractions, The Structure of Microinteractions–The Structure of Microinteractions
		alarm app example of, Example 1: Mobile App
	
	amount of, Feedback Illuminates the Rules–Feedback Illuminates the Rules, Less Is More
	
	dishwasher control panel example of, Example 3: Dishwasher Control Panel, Example 3: Dishwasher Control Panel
	
	for errors, Feedback Illuminates the Rules, Feedback as a Personality-Delivery Mechanism, Messages
	
	method of delivery, Feedback Is for Humans–Feedback Is for Humans
		audio, Audio–Speech
	
	haptics, Haptics–Haptics
	
	visual, Visual–Messages
	

	personality conveyed by, The Structure of Microinteractions, Feedback as a Personality-Delivery Mechanism–Feedback as a Personality-Delivery Mechanism
	
	relevance to situation, Feedback Is for Humans
	
	rules communicated by, Designing Rules, Feedback Illuminates the Rules–Feedback Illuminates the Rules
	
	rules for, Designing Rules, Feedback Rules–Feedback Rules
	
	shared playlist example of, Example 2: Online Shared Playlist
	
	Siri example of, Feedback as a Personality-Delivery Mechanism
	
	situations requiring, Feedback Illuminates the Rules–Feedback Is for Humans
	
	slot machine example of, Feedback–Feedback
	

	finger motions (see gestures)
	
	fonts used in this book, Conventions Used in This Book
	
	For loops, Styles of Loops
	
	form fields, Controls
	

G
	geons, Making manual triggers discoverable
	
	gestures, Controls
		as invisible triggers, Invisible triggers
	
	tap state, of manual trigger, Control states
	

	Goldberg, Adele (developer)
		scrollbars, The Secret History of Microinteractions
	

	Gypsy application example, The Secret History of Microinteractions
	

H
	haptic feedback, Haptics–Haptics
	
	hover state, of manual trigger, Control states
	

I
	in process state, of manual trigger, Control states
	
	incoming data, initiating system triggers, System Triggers
	
	infinite loops, Styles of Loops
	
	Ingalls, Dan (developer)
		scrollbars, The Secret History of Microinteractions
	

	internal data, initiating system triggers, System Triggers
	
	invisible manual triggers, Invisible triggers–Invisible triggers, Controls and User Input
	
	invitation state, of screen object, Screens and States
	
	iPhone mobile app example, Example 1: Mobile App–Example 1: Mobile App
	

K
	Kay, Alan (developer)
		scrollbars, The Secret History of Microinteractions
	

	keyboard shortcuts, as redundant triggers, Controls and User Input
	
	Koomey’s Law, The Secret History of Microinteractions
	
	Kryder’s Law, The Secret History of Microinteractions
	

L
	labels, Labels–Labels, Microcopy
	
	Law of the Conservation of Complexity, Absorb Complexity
	
	Lean UX process, for testing, Testing Microinteractions
	
	location, geographic, initiating system
 triggers, System Triggers
	
	long loops, Long Loops–Progressive disclosure or reduction
	
	The Long Wow, Long Loops
	
	loops, The Structure of Microinteractions, The Structure of Microinteractions, Loops–Progressive disclosure or reduction
		alarm app example of, Example 1: Mobile App
	
	dishwasher control panel example of, Example 3: Dishwasher Control Panel
	
	length of, Styles of Loops
	
	long loops, Long Loops–Progressive disclosure or reduction
	
	Mars Spirit rover example of, Loops and Modes
	
	rules for, Designing Rules
	
	shared playlist example of, Example 2: Online Shared Playlist
	
	types of, Styles of Loops
	

M
	manual triggers, Manual Triggers–Labels
		components of, The Components of a Trigger–Labels
	
	consistent action taken by, Manual Triggers
	
	controls for, Controls–Invisible triggers
	
	corresponding to system triggers, System Triggers
	
	discoverability of, Making manual triggers discoverable–Making manual triggers discoverable
	
	information shown by, Bring the Data Forward–Bring the Data Forward
	
	invisible, Invisible triggers–Invisible triggers, Controls and User Input
	
	labels for, Labels–Labels, Microcopy
	
	states of, Control states–Control states
	
	visibility of, Manual Triggers, Manual Triggers
	
	visual affordance of, Controls, Making manual triggers discoverable
	

	Mars Spirit rover example, Loops and Modes–Loops and Modes
	
	meta rules (see loops; rules)
	
	MetroCard example, Triggers–Triggers
	
	microcopy, Microcopy–Microcopy
		(see also labels)
	

	microinteractions, Designing Microinteractions–Designing Microinteractions
		becoming features, Turning Microinteractions into Features–Turning Microinteractions into Features
	
	compared to features, Microinteractions Are Not Features ... But Still Matter–Microinteractions Are Not Features ... But Still Matter
	
	feedback for (see feedback)
	
	history of, The Secret History of Microinteractions–The Secret History of Microinteractions
	
	importance of, Designing Microinteractions–Designing Microinteractions, Microinteractions Can Be Big–Microinteractions Can Be Big
	
	improving, How to Fix a Dull Microinteraction–How to Fix a Dull Microinteraction
	
	including in product design, Microinteractions as a Philosophy–Microinteractions as a Philosophy
	
	loops for (see loops)
	
	as minimum viable
 product, Microinteractions as a Philosophy
	
	modes for (see modes)
	
	relationship to features, Orchestrating Microinteractions
	
	relationship to other microinteractions, Turning Microinteractions into Features
	
	rules for (see rules)
	
	scope of, Microinteractions Can Be Big, Microinteractions as a Philosophy
	
	as Signature Moments, Microinteractions as a Philosophy, Orchestrating Microinteractions
	
	structure of, The Structure of Microinteractions–The Structure of Microinteractions
	
	testing, Testing Microinteractions–A Process for Testing Microinteractions
		process for, A Process for Testing Microinteractions–A Process for Testing Microinteractions
	
	qualitative data for, What to Look for During Testing–What to Look for During Testing
	
	quantitative data for, Using Quantitative Data–Using Quantitative Data
	

	triggers for (see triggers)
	

	minimum viable product, Microinteractions as a Philosophy
	
	mobile app example, Example 1: Mobile App–Example 1: Mobile App
	
	modes, The Structure of Microinteractions, The Structure of Microinteractions, Modes–Spring-Loaded and One-off Modes
		alarm app example of, Example 1: Mobile App
	
	avoiding, reasons for, The Secret History of Microinteractions, Modes
	
	dishwasher control panel example of, Example 3: Dishwasher Control Panel
	
	Mars Spirit rover example of, Loops and Modes
	
	one-off modes, Spring-Loaded and One-off Modes
	
	rules for, Designing Rules
	
	separate screen for, Modes
	
	spring-loaded modes, Spring-Loaded and One-off Modes
	
	when to use, Modes
	

	Moeslinger, Sigi (designer)
		MetroCard Vending Machine, Triggers
	

	Moore’s Law, The Secret History of Microinteractions
	
	mouse movements, as invisible triggers, Invisible triggers
	
	music service example, Example 2: Online Shared Playlist–Example 2: Online Shared Playlist
	
	mute button example, Designing Microinteractions–Designing Microinteractions, The Structure of Microinteractions
	

N
	nouns, for rules, Verbs and Nouns–Verbs and Nouns
	

O
	objects (see screen objects)
	
	on click state, of manual trigger, Control states
	
	one-off modes, Spring-Loaded and One-off Modes
	
	online shared playlist example, Example 2: Online Shared Playlist–Example 2: Online Shared Playlist
	
	open loops, Styles of Loops
	
	options (see user options)
	

P
	personality, conveyed by feedback, The Structure of Microinteractions, Feedback as a Personality-Delivery Mechanism–Feedback as a Personality-Delivery Mechanism
	
	playlist example, Example 2: Online Shared Playlist–Example 2: Online Shared Playlist
	
	Poka-Yoke Principle, Preventing Errors
	
	power consumption, Koomey’s Law regarding, The Secret History of Microinteractions
	
	privacy issues, with data collection, Don’t Start from Zero, Feedback as a Personality-Delivery Mechanism
	
	processor speed, Moore’s Law regarding, The Secret History of Microinteractions
	
	product design, microinteractions included in, Microinteractions as a Philosophy–Microinteractions as a Philosophy
	
	progressive disclosure, Progressive disclosure or reduction
	
	progressive reduction, Progressive disclosure or reduction
	

R
	radio buttons, Controls
	
	reduction, progressive, Progressive disclosure or reduction
	
	remote control example, The Secret History of Microinteractions
	
	rollover state, of manual trigger, Control states
	
	Roomba example, Microinteractions Can Be Big
	
	rules, The Structure of Microinteractions, The Structure of Microinteractions–The Structure of Microinteractions, Designing Rules–Designing Rules
		alarm app example of, Example 1: Mobile App
	
	algorithms for, Algorithms–Algorithms
	
	complexity of, Absorb Complexity–Absorb Complexity
	
	constraints on, Constraints–Constraints
	
	context for, Don’t Start from Zero–Don’t Start from Zero
	
	controls implementing, Controls and User Input–Controls and User Input
	
	diagramming, Generating Rules–Verbs and Nouns
	
	dishwasher control panel example of, Example 3: Dishwasher Control Panel, Example 3: Dishwasher Control Panel
	
	error prevention by, Preventing Errors
	
	feedback communicating, Designing Rules, Feedback Illuminates the Rules–Feedback Illuminates the Rules
	
	for feedback, Feedback Rules–Feedback Rules
	
	goal of, determining, Designing Rules
	
	limited user options for, Limited Options and Smart Defaults–Limited Options and Smart Defaults
	
	microcopy for, Microcopy–Microcopy
	
	mute button example of, Designing Microinteractions
	
	nouns used in, Verbs and Nouns–Verbs and Nouns
	
	Save As example of, Rules–Rules
	
	screen objects affected by, Screens and States–Screens and States
	
	shared playlist example of, Example 2: Online Shared Playlist, Example 2: Online Shared Playlist
	
	slot machine example of, Feedback
	
	smart defaults for, Limited Options and Smart Defaults–Limited Options and Smart Defaults
	
	for system triggers, System Trigger Rules–System Trigger Rules
	
	verbs used in, Verbs and Nouns–Verbs and Nouns
	
	writing, Generating Rules–Verbs and Nouns
	

S
	Save As example, Rules–Rules
	
	scope of microinteractions, Microinteractions Can Be Big, Microinteractions as a Philosophy
	
	screen objects
		controls, Controls–Invisible triggers, Controls and User Input–Controls and User Input
	
	nouns for, Verbs and Nouns–Verbs and Nouns
	
	states of, Screens and States–Screens and States
	

	scroll wheels, Controls
	
	scrollbars example, The Secret History of Microinteractions
	
	setting state, of manual trigger, Control states
	
	settings
		mode for, Modes, Spring-Loaded and One-off Modes, Example 1: Mobile App
	
	trigger for, Manual Triggers, System Triggers
	

	shared playlist example, Example 2: Online Shared Playlist–Example 2: Online Shared Playlist
	
	Shingo, Shigeo (engineer)
		Poka-Yoke Principle, Preventing Errors
	

	Signature Moments, Microinteractions as a Philosophy, Orchestrating Microinteractions
	
	Siri example, Feedback as a Personality-Delivery Mechanism
	
	sliders, Controls
	
	slot machine example, Feedback–Feedback
	
	smart defaults, for rules, Limited Options and Smart Defaults–Limited Options and Smart Defaults
	
	social interactions, initiating system
 triggers, System Triggers
	
	speech, as feedback, Speech
	
	Spirit rover example, Loops and Modes–Loops and Modes
	
	spring-loaded modes, Spring-Loaded and One-off Modes
	
	states
		of manual triggers, Control states–Control states
	
	of screen objects, Screens and States–Screens and States
	

	storage space, Kryder’s Law regarding, The Secret History of Microinteractions
	
	system triggers, System Triggers–System Trigger Rules
		conditions initiating, System Triggers, System Trigger Rules
	
	corresponding manual controls for, System Triggers
	
	rules for, System Trigger Rules–System Trigger Rules
	
	user’s ability to adjust, System Triggers
	

T
	tactile feedback (see haptic feedback)
	
	tap state, of manual trigger, Control states
	
	taps (see gestures)
	
	TaskRabbit example, Putting It All Together–Putting It All Together
	
	Tesler, Larry (developer)
		Gypsy application, The Secret History of Microinteractions
	
	Law of the Conservation of Complexity, Absorb Complexity
	

	testing microinteractions, Testing Microinteractions–A Process for Testing Microinteractions
		process for, A Process for Testing Microinteractions–A Process for Testing Microinteractions
	
	qualitative data for, What to Look for During Testing–What to Look for During Testing
	
	quantitative data for, Using Quantitative Data–Using Quantitative Data
	

	text fields, Controls
	
	textual feedback, Messages
	
	toaster example, Microinteractions Can Be Big
	
	toggle state, of manual trigger, Control states
	
	toggle switches, Controls
	
	touchscreen gestures (see gestures)
	
	triggers, The Structure of Microinteractions–The Structure of Microinteractions
		alarm app example of, Example 1: Mobile App
	
	dishwasher control panel example of, Example 3: Dishwasher Control Panel
	
	manual triggers, Manual Triggers–Labels
		components of, The Components of a Trigger–Labels
	
	consistent action taken by, Manual Triggers
	
	controls for, Controls–Invisible triggers
	
	corresponding to system triggers, System Triggers
	
	discoverability of, Making manual triggers discoverable–Making manual triggers discoverable
	
	information shown by, Bring the Data Forward–Bring the Data Forward
	
	invisible, Invisible triggers–Invisible triggers, Controls and User Input
	
	labels for, Labels–Labels, Microcopy
	
	states of, Control states–Control states
	
	visibility of, Manual Triggers, Manual Triggers
	
	visual affordance of, Controls, Making manual triggers discoverable
	

	MetroCard example of, Triggers–Triggers
	
	mute button example of, The Structure of Microinteractions
	
	personality conveyed by, The Structure of Microinteractions
	
	shared playlist example of, Example 2: Online Shared Playlist
	
	system triggers, System Triggers–System Trigger Rules
		conditions initiating, System Triggers, System Trigger Rules
	
	corresponding manual controls for, System Triggers
	
	rules for, System Trigger Rules–System Trigger Rules
	
	user’s ability to adjust, System Triggers
	

	TV remote control example, The Secret History of Microinteractions
	
	Twitter example, Microinteractions Can Be Big
	

U
	Udagawa, Masamichi (designer)
		MetroCard Vending Machine, Triggers
	

	updated state, of screen object, Screens and States
	
	user options
		controls for, Controls–Invisible triggers, Controls and User Input–Controls and User Input
	
	limiting, Limited Options and Smart Defaults–Limited Options and Smart Defaults
	
	predicting, Limited Options and Smart Defaults
	
	settings
		mode for, Modes, Spring-Loaded and One-off Modes, Example 1: Mobile App
	
	trigger for, Manual Triggers, System Triggers
	

	smart defaults for, Limited Options and Smart Defaults–Limited Options and Smart Defaults
	

V
	verbs, for rules, Verbs and Nouns–Verbs and Nouns
	
	vibrations (see haptic feedback)
	
	visibility, of manual triggers, Manual Triggers, Manual Triggers
	
	visual affordance, of manual triggers, Controls, Making manual triggers discoverable
	
	visual feedback, Visual–Messages
	
	visual stimulus, recognition of, Making manual triggers discoverable–Making manual triggers discoverable
	
	voice input, as invisible trigger, Invisible triggers
	

W
	website for this book, How to Contact Us
	
	While loops, Styles of Loops
	

About the Author
Dan Saffer is a Director of Interaction Design at Smart Design. He is the author of Designing for Interaction: Creating Innovative Applications and Devices (New Riders), Designing Gestural Interfaces (O'Reilly), and Designing Devices. Since 1995, he has designed appliances, devices, software, websites, and services that are used by millions of people every day.

Colophon
There are three species of hummingbird on the cover of
 Microinteractions: the rubythroat
 (Archilochus colubris), the ruby topaz
 (Chrysolampis mosquitus), and the fiery topaz
 (Topaza pyra). Hummingbirds are small birds of the
 family Trochilidae that feed off the nectar of
 trumpet-shaped flowers. They are characterized by their iridescent plumage,
 especially the males, who show off their brightly colored throats to attract
 females. Hummingbirds are also known for their rapidly beating wings, which
 can beat over 50 times per second.
The rubythroat hummingbird is unique in being the only hummingbird
 that breeds in eastern North America. Like most hummingbirds, the rubythroat
 is a solitary creature, appearing with others of its kind only during mating
 season and with its young for the first two weeks of their lives. The
 rubythroat hummingbird has become accepting of contact with humans and will
 show up at bird feeders, occasionally investigating anyone wearing bright
 red clothing due to the color of the flowers it normally feeds on.
The ruby topaz hummingbird lacks the curved wings of the rubythroat,
 and is found at both low and high altitudes. It too has acclimated itself to
 cultivated land and gardens. Some of these birds are sedentary and some are
 migratory, depending on the location of their range. The ruby topaz is not
 shy and can be found throughout southern Central America, much of South
 America, and the Lesser Antilles. It gets its name from the yellow throat
 and bright red crown of the male.
The fiery topaz, also known as the Inca topaz hummingbird, has a
 habitat restricted to South America, as its nickname suggests. Like the ruby
 topaz hummingbird, it has an iridescent yellow throat, but has a dark cap
 and a red breast instead. Unlike the rubythroat hummingbird, this bird does
 not migrate, preferring to breed in its native territory and sequester
 itself in the rainforest canopy. Despite its bright throat plumage and
 relatively large size, the fiery topaz is hard to find, and there are still
 arguments over whether or not this species is its own classification, or a
 subspecies of the crimson topaz (Topaza pella).
The cover image is an original design by Karen Montgomery, inspired by
 Wood’s Animate
 Creation. The cover font is Adobe ITC Garamond. The text font is
 Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code
 font is Dalton Maag’s Ubuntu Mono.

Microinteractions

Dan Saffer

Editor
Mary Treseler

	Revision History
	2013-04-25	First release

	Revision History
	2013-10-09	Second release

Copyright © 2013

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc.
 Microinteractions, the image of hummingbirds, and
 related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-10-18T11:59:21-07:00

Microinteractions

Table of Contents
		Praise for Microinteractions

		Foreword

		Preface		What Is This Book About?

		Who Should Read This Book

		How This Book Is Organized

		Why Write a Book About Microinteractions?

		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Content Updates		October 3, 2013

		Acknowledgments

		1. Designing Microinteractions		Microinteractions Are Not Features ... But Still Matter		Microinteractions Can Be Big

		The Secret History of Microinteractions

		The Structure of Microinteractions

		Microinteractions as a Philosophy

		Summary

		2. Triggers		Manual Triggers		Bring the Data Forward

		The Components of a Trigger		Controls		Making manual triggers discoverable

		Invisible triggers

		Control states

		Labels

		System Triggers		System Trigger Rules

		Summary

		3. Rules		Designing Rules		Generating Rules

		Verbs and Nouns

		Screens and States

		Constraints

		Don’t Start from Zero

		Absorb Complexity

		Limited Options and Smart Defaults		Controls and User Input

		Preventing Errors

		Microcopy

		Algorithms

		Summary

		4. Feedback		Feedback Illuminates the Rules		Feedback Is for Humans

		Less Is More

		Feedback as a Personality-Delivery Mechanism

		Feedback Methods		Visual		Animation

		Messages

		Audio		Earcons

		Speech

		Haptics

		Feedback Rules

		Summary

		5. Loops and Modes		Modes		Spring-Loaded and One-off Modes

		Loops		Styles of Loops

		Long Loops		Progressive disclosure or reduction

		Summary

		6. Putting It All Together		Example 1: Mobile App

		Example 2: Online Shared Playlist

		Example 3: Dishwasher Control Panel

		Prototyping and Documenting Microinteractions

		Orchestrating Microinteractions		Turning Microinteractions into Features

		How to Fix a Dull Microinteraction

		Think Small

		A. Testing Microinteractions		What to Look for During Testing

		Using Quantitative Data

		A Process for Testing Microinteractions

		Index

		About the Author

		Colophon

		Copyright

